369 research outputs found
Relative modulation sensitivities of the red and green color mechanisms
The sensitivities of the human green and red cone mechanisms to sinusiodally flickering light were found to be near equal and independent of field size and estimation method. No wavelength dependency of modulation sensitivity was found. An observer who lacks the red cone pigment (protanope) did not show unusually high flicker sensitivity to green light of 525 nm. The modulation transfer function for the normal observer measured with a green flickering test on a red background is identical to that on a green background when the backgrounds have been equated for the green cones by the protanope. The same is true for the contrast transfer function of the normal observer when determined with a green grating on the red and green backgrounds equated by the protanope.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22781/1/0000336.pd
Time scale separation and heterogeneous off-equilibrium dynamics in spin models over random graphs
We study analytically and numerically the statics and the off-equilibrium
dynamics of spin models over finitely connected random graphs. We identify a
threshold value for the connectivity beyond which the loop structure of the
graph becomes thermodynamically relevant. Glauber dynamics simulations show
that this loop structure is responsible for the onset of dynamical features of
a local character (dynamical heterogeneities and spontaneous time scale
separation), consistently with previous (experimental and numerical) studies of
glasses and spin glasses in their approach to the low temperature phase.Comment: 5 pages, latex, 2 postscript figure
Microscopic Aspects of Stretched Exponential Relaxation (SER) in Homogeneous Molecular and Network Glasses and Polymers
Because the theory of SER is still a work in progress, the phenomenon itself
can be said to be the oldest unsolved problem in science, as it started with
Kohlrausch in 1847. Many electrical and optical phenomena exhibit SER with
probe relaxation I(t) ~ exp[-(t/{\tau}){\beta}], with 0 < {\beta} < 1. Here
{\tau} is a material-sensitive parameter, useful for discussing chemical
trends. The "shape" parameter {\beta} is dimensionless and plays the role of a
non-equilibrium scaling exponent; its value, especially in glasses, is both
practically useful and theoretically significant. The mathematical complexity
of SER is such that rigorous derivations of this peculiar function were not
achieved until the 1970's. The focus of much of the 1970's pioneering work was
spatial relaxation of electronic charge, but SER is a universal phenomenon, and
today atomic and molecular relaxation of glasses and deeply supercooled liquids
provide the most reliable data. As the data base grew, the need for a
quantitative theory increased; this need was finally met by the
diffusion-to-traps topological model, which yields a remarkably simple
expression for the shape parameter {\beta}, given by d*/(d* + 2). At first
sight this expression appears to be identical to d/(d + 2), where d is the
actual spatial dimensionality, as originally derived. The original model,
however, failed to explain much of the data base. Here the theme of earlier
reviews, based on the observation that in the presence of short-range forces
only d* = d = 3 is the actual spatial dimensionality, while for mixed short-
and long-range forces, d* = fd = d/2, is applied to four new spectacular
examples, where it turns out that SER is useful not only for purposes of
quality control, but also for defining what is meant by a glass in novel
contexts. (Please see full abstract in main text
Source characteristics of oxygenated volatile organic compounds and hydrogen cyanide
Airborne trace gas measurements from Transport and Chemical Evolution over the Pacific (TRACE-P), Pacific Exploratory Mission (PEM)-Tropics B, and Intercontinental Chemical Transport Experiment-North America (INTEX-NA) experiments are analyzed to examine the major source factors contributing to the observed variabilities of oxygenated volatile organic compounds and cyanides. The positive matrix factorization method is applied to coincident measurements of 11 chemicals including CH3OH, CH3COCH3, CH3CHO, C2H2, C2H6, i-C5H12, CO, CH3Cl, and CHBr3. Measurements of HCN and CH3CN are available for TRACE-P and INTEX-NA. We identify major source contributions from the terrestrial biosphere, biomass burning, industry/urban regions, and oceans. Spatial and back trajectory characteristics of these factors are examined. On the basis of TRACE-P and PEM-Tropics B data, we find a factor that explains 80-88% of the CH3OH variability, 20-40% of CH3COCH3, 7-35% of CH3CHO, and 41% of HCN, most likely representing the emissions from terrestrial biosphere. Our analysis suggested that biogenic emissions of HCN may be significant. Cyanogenesis in plants is likely a major emission process for HCN, which was not fully accounted for previously. Larger contributions than previous global estimations to CH3COCH3 and CH3CHO by biomass burning and industry/urban sources likely reflect significant secondary production from volatile organic compound oxidation. No evidence was found for large emissions of CH3COCH3 from the ocean. The oceanic CH3CHO contribution implies large regional variations. Copyright 2007 by the American Geophysical Union
Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example
We extend our statistical mechanical theory of the glass transition from
examples consisting of point particles to molecular liquids with internal
degrees of freedom. As before, the fundamental assertion is that super-cooled
liquids are ergodic, although becoming very viscous at lower temperatures, and
are therefore describable in principle by statistical mechanics. The theory is
based on analyzing the local neighborhoods of each molecule, and a statistical
mechanical weight is assigned to every possible local organization. This
results in an approximate theory that is in very good agreement with
simulations regarding both thermodynamical and dynamical properties
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
Glassy systems under time-dependent driving forces: application to slow granular rheology
We study the dynamics of a glassy model with infinite range interactions
externally driven by an oscillatory force. We find a well-defined transition in
the (Temperature-Amplitude-Frequency) phase diagram between (i) a `glassy'
state characterized by the slow relaxation of one-time quantities, aging in
two-time quantities and a modification of the equilibrium
fluctuation-dissipation relation; and (ii) a `liquid' state with a finite
relaxation time. In the glassy phase, the degrees of freedom governing the slow
relaxation are thermalized to an effective temperature. Using Monte-Carlo
simulations, we investigate the effect of trapping regions in phase space on
the driven dynamics. We find that it alternates between periods of rapid motion
and periods of trapping. These results confirm the strong analogies between the
slow granular rheology and the dynamics of glasses. They also provide a
theoretical underpinning to earlier attempts to present a thermodynamic
description of moderately driven granular materials.Comment: Version accepted for publication - Physical Review
Methanotropic microbial communities associated with bubble plumes above gas seeps in the Black Sea
Bubbles evolving from active gas seeps can be traced by hydroacoustic imaging up to 1000 m high in the Black Sea water column. Although methane concentrations are not distinguishable between the water column above the deep seep and reference sites, atmospheric noble gas measurements clearly show the constant input of gases (mainly methane) via seepage into the Black Sea. Archaea (ANME-1, ANME-2) and methanotrophic bacteria detected with specific 16S rRNA-targeted oligonucleotide probes are related to active gas seeps in the oxic and anoxic water column. It is suggested that methane seeps have a much greater influence on the Black Sea methane budget than previously acknowledged and that ANME-1 and ANME-2 are injected via gas bubbles from the sediment into the anoxic water column mediating methane oxidation. Our results show further that only minor amounts of methane evolving from Black Sea gas seeps reach the atmosphere due to the very effective microbial barrier. Hence only major thermodynamically and/or tectonically triggered gas hydrate dissociation has the potential to induce rapid climate changes as suggested by the “clathrate gun hypothesis.
Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review
Background
Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults.
Methods
A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these.
Results
28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures.
Conclusions
The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or people with neurological impairments is limited. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should explicitly take the relation between the cognitive and physical skills into account.ISSN:1471-231
- …