50 research outputs found

    HTLV-1 infection in solid organ transplant donors and recipients in Spain

    Get PDF
    Background: HTLV-1 infection is a neglected disease, despite infecting 10–15 million people worldwide and severe illnesses develop in 10% of carriers lifelong. Acknowledging a greater risk for developing HTLV-1 associated illnesses due to immunosuppression, screening is being widely considered in the transplantation setting. Herein, we report the experience with universal HTLV testing of donors and recipients of solid organ transplants in a survey conducted in Spain. Methods: All hospitals belonging to the Spanish HTLV network were invited to participate in the study. Briefly, HTLV antibody screening was performed retrospectively in all specimens collected from solid organ donors and recipients attended since the year 2008. Results: A total of 5751 individuals were tested for HTLV antibodies at 8 sites. Donors represented 2312 (42.2%), of whom 17 (0.3%) were living kidney donors. The remaining 3439 (59.8%) were recipients. Spaniards represented nearly 80%. Overall, 9 individuals (0.16%) were initially reactive for HTLV antibodies. Six were donors and 3 were recipients. Using confirmatory tests, HTLV-1 could be confirmed in only two donors, one Spaniard and another from Colombia. Both kidneys of the Spaniard were inadvertently transplanted. Subacute myelopathy developed within 1 year in one recipient. The second recipient seroconverted for HTLV-1 but the kidney had to be removed soon due to rejection. Immunosuppression was stopped and 3 years later the patient remains in dialysis but otherwise asymptomatic. Conclusion: The rate of HTLV-1 is low but not negligible in donors/recipients of solid organ transplants in Spain. Universal HTLV screening should be recommended in all donor and recipients of solid organ transplantation in Spain. Evidence is overwhelming for very high virus transmission and increased risk along with the rapid development of subacute myelopath

    Productivity trends and collaboration patterns: A diachronic study in the eating disorders field

    Full text link
    [EN] Objective The present study seeks to extend previous bibliometric studies on eating disorders (EDs) by including a time-dependent analysis of the growth and evolution of multi-author collaborations and their correlation with ED publication trends from 1980 to 2014 (35 years). Methods Using standardized practices, we searched Web of Science (WoS) Core Collection (WoSCC) (indexes: Science Citation Index-Expanded [SCIE], & Social Science Citation Index [SSCI]) and Scopus (areas: Health Sciences, Life Sciences, & Social Sciences and Humanities) to identify a large sample of articles related to EDs. We then submitted our sample of articles to bibliometric and graph theory analyses to identify co-authorship and social network patterns. Results We present a large number of detailed findings, including a clear pattern of scientific growth measured as number of publications per five-year period or quinquennium (Q), a tremendous increase in the number of authors attracted by the ED subject, and a very high and steady growth in collaborative work. Conclusions We inferred that the noted publication growth was likely driven by the noted increase in the number of new authors per Q. Social network analyses suggested that collaborations within ED follow patters of interaction that are similar to well established and recognized disciplines, as indicated by the presence of a ¿giant cluster¿, high cluster density, and the replication of the ¿small world¿ phenomenon¿the principle that we are all linked by short chains of acquaintances.This work was performed with a subsidy from Universidad Catolica de Valencia "San Vicente Martir" to resarch group INDOTEI: Evaluacion de la Ciencia, for the years 2016-2017. This work is benefited from Spanish Government assistance through Government Delegation for the National Drugs Plan of the Ministry of Health, Social Services and Equality (project 2016/028); and National R+D+I (projects: CS02012-39632-C02-01 and CS02015-65594-C2-2-R) and 2015-Networks of Excellence Call (project CS02015-71867-REDT) of the Ministry of Economy and Competitiveness.Valderrama Zurian, JC.; Aguilar-Moya, R.; Cepeda-Benito, A.; Melero-Fuentes, D.; Navarro-Moreno, MÁ.; Gandía-Balaguer, A.; Aleixandre-Benavent, R. (2017). Productivity trends and collaboration patterns: A diachronic study in the eating disorders field. PLoS ONE. 12(8):1-17. https://doi.org/10.1371/journal.pone.0182760S117128McClelland, J., Bozhilova, N., Campbell, I., & Schmidt, U. (2013). A Systematic Review of the Effects of Neuromodulation on Eating and Body Weight: Evidence from Human and Animal Studies. European Eating Disorders Review, 21(6), 436-455. doi:10.1002/erv.2256Lancelot, C., Brooks-Gunn, J., Warren, M. P., & Newman, D. L. (1991). Comparison of DSM-III and DSM-III-R bulimia nervosa classifications for psychopathology and other eating behaviors. International Journal of Eating Disorders, 10(1), 57-66. doi:10.1002/1098-108x(199101)10:13.0.co;2-tWONDERLICH, S. A., CROSBY, R. D., JOINER, T., PETERSON, C. B., BARDONE-CONE, A., KLEIN, M., … VRSHEK, S. (2005). Personality subtyping and bulimia nervosa: psychopathological and genetic correlates. Psychological Medicine, 35(5), 649-657. doi:10.1017/s0033291704004234Spitzer, R. L., Devlin, M. J., Walsh, B. T., Hasin, D., Wing, R., Marcus, M. D., … Nonas, C. (1991). Binge eating disorder: To be or not to be in DSM-IV. International Journal of Eating Disorders, 10(6), 627-629. doi:10.1002/1098-108x(199111)10:63.0.co;2-4Wonderlich, S. A., Gordon, K. H., Mitchell, J. E., Crosby, R. D., & Engel, S. G. (2014). The Validity and Clinical Utility of Binge Eating Disorder. FOCUS, 12(4), 489-505. doi:10.1176/appi.focus.120412Theander, S. S. (2002). Literature on eating disorders during 40 Years: increasing number of papers, emergence of bulimia nervosa. European Eating Disorders Review, 10(6), 386-398. doi:10.1002/erv.495Clinton, D. (2010). Towards an ecology of eating disorders: Creating sustainability through the integration of scientific research and clinical practice. European Eating Disorders Review, 18(1), 1-9. doi:10.1002/erv.986Soh, N. L.-W., & Walter, G. (2013). Publications on cross-cultural aspects of eating disorders. Journal of Eating Disorders, 1(1). doi:10.1186/2050-2974-1-4Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039. doi:10.1126/science.1136099Kumar, S. (2015). Co-authorship networks: a review of the literature. Aslib Journal of Information Management, 67(1), 55-73. doi:10.1108/ajim-09-2014-0116Barabási, A. ., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3-4), 590-614. doi:10.1016/s0378-4371(02)00736-7Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(Supplement 1), 5200-5205. doi:10.1073/pnas.0307545100Aleixandre-Benavent, R., & Alonso-Arroyo, A. (2011). Indicadores bibliométricos, patología del aparato respiratorio y reducción del consumo de tabaco. Revista de Patología Respiratoria, 14(1), 1-3. doi:10.1016/s1576-9895(11)70095-9Pino-Díaz, J., Jiménez-Contreras, E., Ruíz-Baños, R., & Bailón-Moreno, R. (2011). Evaluación de redes tecnocientíficas: la red española sobre Áreas Protegidas, según la Web of Science. Revista española de Documentación Científica, 34(3), 301-333. doi:10.3989/redc.2011.3.804Valderrama-Zurián, J.-C., Aguilar-Moya, R., Melero-Fuentes, D., & Aleixandre-Benavent, R. (2015). A systematic analysis of duplicate records in Scopus. Journal of Informetrics, 9(3), 570-576. doi:10.1016/j.joi.2015.05.002Guardiola-Wanden-Berghe, R., Sanz-Valero, J., & Wanden-Berghe, C. (2012). Medical subject headings versus American Psychological Association Index Terms: indexing eating disorders. Scientometrics, 94(1), 305-311. doi:10.1007/s11192-012-0866-7Soh, N., Walter, G., Touyz, S., Russell, J., Malhi, G. S., & Hunt, G. E. (2012). Food for thought: Comparison of citations received from articles appearing in specialized eating disorder journals versus general psychiatry journals. International Journal of Eating Disorders, 45(8), 990-994. doi:10.1002/eat.22036Theander, S. S. (2004). Trends in the literature on eating disorders over 36 years(1965-2000): terminology, interpretation and treatment. European Eating Disorders Review, 12(1), 4-17. doi:10.1002/erv.559Kawamura, M., Thomas, C. D. L., Tsurumoto, A., Sasahara, H., & Kawaguchi, Y. (2000). Lotka’s law and productivity index of authors in a scientific journal. Journal of Oral Science, 42(2), 75-78. doi:10.2334/josnusd.42.75Lawani SM. Quality, collaboration and citations in cancer research: A bibliometric study. PhD thesis. Florida State University, Tallahassee. 1980.Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE, 9(6), e98679. doi:10.1371/journal.pone.0098679Pike, K. M., & Dunne, P. E. (2015). The rise of eating disorders in Asia: a review. Journal of Eating Disorders, 3(1). doi:10.1186/s40337-015-0070-2El Ghoch, M., Soave, F., Calugi, S., & Dalle Grave, R. (2013). Eating Disorders, Physical Fitness and Sport Performance: A Systematic Review. Nutrients, 5(12), 5140-5160. doi:10.3390/nu5125140Jones, A. W. (2007). The distribution of forensic journals, reflections on authorship practices, peer-review and role of the impact factor. Forensic Science International, 165(2-3), 115-128. doi:10.1016/j.forsciint.2006.05.013Baker, T., Hatsukami, D., Lerman, C., O’Malley, S., Shields, A., & Fiore, M. (2003). Transdisciplinary science applied to the evaluation of treatments for tobacco use. Nicotine & Tobacco Research, 5(6), 89-99. doi:10.1080/14622200310001625564González-Alcaide, G., Melero-Fuentes, D., Aleixandre-Benavent, R., & Valderrama-Zurián, J.-C. (2013). Productivity and Collaboration in Scientific Publications on Criminology. Journal of Criminal Justice Education, 24(1), 15-37. doi:10.1080/10511253.2012.664153López-Muñoz, F., Alamo, C., Rubio, G., García-García, P., Martín-Agueda, B., & Cuenca, E. (2003). Bibliometric analysis of biomedical publications on SSRI during 1980-2000. Depression and Anxiety, 18(2), 95-103. doi:10.1002/da.10121González-Alcaide, G., Aleixandre-Benavent, R., Navarro-Molina, C., & Valderrama-Zurián, J. C. (2008). Coauthorship networks and institutional collaboration patterns in reproductive biology. Fertility and Sterility, 90(4), 941-956. doi:10.1016/j.fertnstert.2007.07.1378González-Alcaide, G., Park, J., Huamaní, C., Belinchón, I., & Ramos, J. M. (2015). Evolution of Cooperation Patterns in Psoriasis Research: Co-Authorship Network Analysis of Papers in Medline (1942–2013). PLOS ONE, 10(12), e0144837. doi:10.1371/journal.pone.0144837Bordons, M., & Ángeles Zulueta, M. (2002). La interdisciplinariedad en los grupos españoles de investigación en el área cardiovascular. Revista Española de Cardiología, 55(9), 900-912. doi:10.1016/s0300-8932(02)76728-6Chan, H. F., Önder, A. S., & Torgler, B. (2015). The first cut is the deepest: repeated interactions of coauthorship and academic productivity in Nobel laureate teams. Scientometrics, 106(2), 509-524. doi:10.1007/s11192-015-1796-yBordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135-144. doi:10.1016/j.joi.2014.12.001Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. doi:10.1073/pnas.98.2.404Fatt, C. K., Ujum, E. A., & Ratnavelu, K. (2010). The structure of collaboration in the Journal of Finance. Scientometrics, 85(3), 849-860. doi:10.1007/s11192-010-0254-0Kretschmer, H. (2004). Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the Web. Scientometrics, 60(3), 409-420. doi:10.1023/b:scie.0000034383.86665.22Yan, E., Ding, Y., & Zhu, Q. (2009). Mapping library and information science in China: a coauthorship network analysis. Scientometrics, 83(1), 115-131. doi:10.1007/s11192-009-0027-9Yin, L., Kretschmer, H., Hanneman, R. A., & Liu, Z. (2006). Connection and stratification in research collaboration: An analysis of the COLLNET network. Information Processing & Management, 42(6), 1599-1613. doi:10.1016/j.ipm.2006.03.021Lambiotte, R., & Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. Journal of Informetrics, 3(3), 180-190. doi:10.1016/j.joi.2009.03.007Leydesdorff, L. (2012). World shares of publications of the USA, EU-27, and China compared and predicted using the new Web of Science interface versus Scopus. El Profesional de la Informacion, 21(1), 43-49. doi:10.3145/epi.2012.ene.06Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2013). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491-1504. doi:10.1007/s11192-013-1148-8López-Illescas, C., de Moya-Anegón, F., & Moed, H. F. (2008). Coverage and citation impact of oncological journals in the Web of Science and Scopus. Journal of Informetrics, 2(4), 304-316. doi:10.1016/j.joi.2008.08.001Warren, C. S., Gleaves, D. H., Cepeda-Benito, A., Fernandez, M. del C., & Rodriguez-Ruiz, S. (2005). Ethnicity as a protective factor against internalization of a thin ideal and body dissatisfaction. International Journal of Eating Disorders, 37(3), 241-249. doi:10.1002/eat.20102Prince, R., & Thebaud, E. F. (1983). Is Anorexia Nervosa a Culture-Bound Syndrome? Transcultural Psychiatric Research Review, 20(4), 299-302. doi:10.1177/136346158302000419Miller, M. N., & Pumariega, A. J. (2001). Culture and Eating Disorders: A Historical and Cross-Cultural Review. Psychiatry: Interpersonal and Biological Processes, 64(2), 93-110. doi:10.1521/psyc.64.2.93.1862

    Rapid subacute myelopathy following kidney transplantation from HTLV-1 donors: role of immunosuppresors and failure of antiretrovirals

    Get PDF
    Two kidney transplant recipients from a single donor became infected with HTLV-1 (human T-lymphotropic virus type 1) in Spain. One developed myelopathy 8 months following surgery despite early prescription of antiretroviral therapy. The allograft was removed from the second recipient at month 8 due to rejection and immunosuppressors discontinued. To date, 3 years later, this patient remains infected but asymptomatic. HTLV-1 infection was recognized retrospectively in the donor, a native Spaniard who had sex partners from endemic regions. Our findings call for a reappraisal of screening policies on donor-recipient organ transplantation. Based on the high risk of disease development and the large flux of persons from HTLV-1 endemic regions, pre-transplant HTLV-1 testing should be mandatory in Spain

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF
    Background and purpose: Prospectively collected data comparing the safety and effectiveness of individual non-vitamin K antagonists (NOACs) are lacking. Our objective was to directly compare the effectiveness and safety of NOACs in patients with newly diagnosed atrial fibrillation (AF). Methods: In GLORIA-AF, a large, prospective, global registry program, consecutive patients with newly diagnosed AF were followed for 3 years. The comparative analyses for (1) dabigatran vs rivaroxaban or apixaban and (2) rivaroxaban vs apixaban were performed on propensity score (PS)-matched patient sets. Proportional hazards regression was used to estimate hazard ratios (HRs) for outcomes of interest. Results: The GLORIA-AF Phase III registry enrolled 21,300 patients between January 2014 and December 2016. Of these, 3839 were prescribed dabigatran, 4015 rivaroxaban and 4505 apixaban, with median ages of 71.0, 71.0, and 73.0 years, respectively. In the PS-matched set, the adjusted HRs and 95% confidence intervals (CIs) for dabigatran vs rivaroxaban were, for stroke: 1.27 (0.79–2.03), major bleeding 0.59 (0.40–0.88), myocardial infarction 0.68 (0.40–1.16), and all-cause death 0.86 (0.67–1.10). For the comparison of dabigatran vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 1.16 (0.76–1.78), myocardial infarction 0.84 (0.48–1.46), major bleeding 0.98 (0.63–1.52) and all-cause death 1.01 (0.79–1.29). For the comparison of rivaroxaban vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 0.78 (0.52–1.19), myocardial infarction 0.96 (0.63–1.45), major bleeding 1.54 (1.14–2.08), and all-cause death 0.97 (0.80–1.19). Conclusions: Patients treated with dabigatran had a 41% lower risk of major bleeding compared with rivaroxaban, but similar risks of stroke, MI, and death. Relative to apixaban, patients treated with dabigatran had similar risks of stroke, major bleeding, MI, and death. Rivaroxaban relative to apixaban had increased risk for major bleeding, but similar risks for stroke, MI, and death. Registration: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01468701, NCT01671007. Date of registration: September 2013

    Anticoagulant selection in relation to the SAMe-TT2R2 score in patients with atrial fibrillation. the GLORIA-AF registry

    Get PDF
    Aim: The SAMe-TT2R2 score helps identify patients with atrial fibrillation (AF) likely to have poor anticoagulation control during anticoagulation with vitamin K antagonists (VKA) and those with scores >2 might be better managed with a target-specific oral anticoagulant (NOAC). We hypothesized that in clinical practice, VKAs may be prescribed less frequently to patients with AF and SAMe-TT2R2 scores >2 than to patients with lower scores. Methods and results: We analyzed the Phase III dataset of the Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF), a large, global, prospective global registry of patients with newly diagnosed AF and ≥1 stroke risk factor. We compared baseline clinical characteristics and antithrombotic prescriptions to determine the probability of the VKA prescription among anticoagulated patients with the baseline SAMe-TT2R2 score >2 and ≤ 2. Among 17,465 anticoagulated patients with AF, 4,828 (27.6%) patients were prescribed VKA and 12,637 (72.4%) patients an NOAC: 11,884 (68.0%) patients had SAMe-TT2R2 scores 0-2 and 5,581 (32.0%) patients had scores >2. The proportion of patients prescribed VKA was 28.0% among patients with SAMe-TT2R2 scores >2 and 27.5% in those with scores ≤2. Conclusions: The lack of a clear association between the SAMe-TT2R2 score and anticoagulant selection may be attributed to the relative efficacy and safety profiles between NOACs and VKAs as well as to the absence of trial evidence that an SAMe-TT2R2-guided strategy for the selection of the type of anticoagulation in NVAF patients has an impact on clinical outcomes of efficacy and safety. The latter hypothesis is currently being tested in a randomized controlled trial. Clinical trial registration: URL: https://www.clinicaltrials.gov//Unique identifier: NCT01937377, NCT01468701, and NCT01671007

    Interim 2017/18 influenza seasonal vaccine effectiveness: Combined results from five European studies

    Get PDF
    Between September 2017 and February 2018, influenza A(H1N1)pdm09, A(H3N2) and B viruses (mainly B/Yamagata, not included in 2017/18 trivalent vaccines) co-circulated in Europe. Interim results from five European studies indicate that, in all age groups, 2017/18 influenza vaccine effectiveness was 25 to 52% against any influenza, 55 to 68% against influenza A(H1N1)pdm09, -42 to 7% against influenza A(H3N2) and 36 to 54% against influenza B. 2017/18 influenza vaccine should be promoted where influenza still circulates
    corecore