9 research outputs found

    Gene Therapy in a Humanized Mouse Model of Familial Hypercholesterolemia Leads to Marked Regression of Atherosclerosis

    Get PDF
    Familial hypercholesterolemia (FH) is an autosomal codominant disorder caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Homozygous FH patients (hoFH) have severe hypercholesterolemia leading to life threatening atherosclerosis in childhood and adolescence. Mice with germ line interruptions in the Ldlr and Apobec1 genes (Ldlr(-/-)Apobec1(-/-)) simulate metabolic and clinical aspects of hoFH, including atherogenesis on a chow diet.In this study, vectors based on adeno-associated virus 8 (AAV8) were used to deliver the gene for mouse Ldlr (mLDLR) to the livers of Ldlr(-/-)Apobec1(-/-) mice. A single intravenous injection of AAV8.mLDLR was found to significantly reduce plasma cholesterol and non-HDL cholesterol levels in chow-fed animals at doses as low as 3×10(9) genome copies/mouse. Whereas Ldlr(-/-)Apobec1(-/-) mice fed a western-type diet and injected with a control AAV8.null vector experienced a further 65% progression in atherosclerosis over 2 months compared with baseline mice, Ldlr(-/-)Apobec1(-/-) mice treated with AAV8.mLDLR realized an 87% regression of atherosclerotic lesions after 3 months compared to baseline mice. Immunohistochemical analyses revealed a substantial remodeling of atherosclerotic lesions.Collectively, the results presented herein suggest that AAV8-based gene therapy for FH may be feasible and support further development of this approach. The pre-clinical data from these studies will enable for the effective translation of gene therapy into the clinic for treatment of FH

    The gut microbiome-Does stool represent right?

    No full text
    : Many stool-based gut microbiome studies have highlighted the importance of the microbiome. However, we hypothesized that stool is a poor proxy for the inner-colonic microbiome and that studying stool samples may be inadequate to capture the true inner-colonic microbiome. To test this hypothesis, we conducted prospective clinical studies with up to 20 patients undergoing an FDA-cleared gravity-fed colonic lavage without oral purgative pre-consumption. The objective of this study was to present the analysis of inner-colonic microbiota obtained non-invasively during the lavage and how these results differ from stool samples. The inner-colonic samples represented the descending, transverse, and ascending colon. All samples were analyzed for 16S rRNA and shotgun metagenomic sequences. The taxonomic, phylogenetic, and biosynthetic gene cluster analyses showed a distinctive biogeographic gradient and revealed differences between the sample types, especially in the proximal colon. The high percentage of unique information found only in the inner-colonic effluent highlights the importance of these samples and likewise the importance of collecting them using a method that can preserve these distinctive signatures. We proposed that these samples are imperative for developing future biomarkers, targeted therapeutics, and personalized medicine

    Hypoplastic Left Heart Syndrome

    No full text
    corecore