776 research outputs found

    By the Old Oaken Bucket, Louise

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1190/thumbnail.jp

    Estimating pneumonia deaths of post-neonatal children in countries of low or no death certification in 2008

    Get PDF
    BACKGROUND: Pneumonia is the leading cause of child deaths globally. The aims of this study were to: a) estimate the number and global distribution of pneumonia deaths for children 1-59 months for 2008 for countries with low (85% coverage of death certification countries was used. For 87 high child-mortality countries pneumonia death estimates were obtained by applying a regression model developed from published and unpublished verbal autopsy data from high child-mortality settings. The total number of 1-59 months pneumonia deaths for the year 2008 for these 122 countries was estimated to be 1.18 M (95% CI 0.77 M-1.80 M), which represented 23.27% (95% CI 17.15%-32.75%) of all 1-59 month child deaths. The country level estimation correlation coefficient between these two methods was 0.40. INTERPRETATION: Although the overall number of post-neonatal pneumonia deaths was similar irrespective to the method of estimation used, the country estimate correlation coefficient was low, and therefore country-specific estimates should be interpreted with caution. Pneumonia remains the leading cause of child deaths and is greatest in regions of poverty and high child-mortality. Despite the concerns about gender inequity linked with childhood mortality we could not estimate sex-specific pneumonia mortality rates due to the inadequate data. Life-saving interventions effective in preventing and treating pneumonia mortality exist but few children in high pneumonia disease burden regions are able to access them. To achieve the United Nations Millennium Development Goal 4 target to reduce child deaths by two-thirds in year 2015 will require the scale-up of access to these effective pneumonia interventions

    Organization theory and military metaphor: time for a reappraisal?

    Get PDF
    A ‘conventional’ use of military metaphor would use it to convey attributes such as hierarchical organization, vertical communication and limited autonomy. This is often used in contrast to a looser form of organization based on the metaphor of the network. However, this article argues that military practice is more complex, with examples of considerable autonomy within the constraints of central direction. It is suggested that not only might this be a more useful metaphor for many contemporary organizations, but also that simplistic uses of military metaphor divert our attention away from the functions that management hierarchies play. The discussion is embedded within a critical realist account of metaphor, arguing for both its value and the need for its further development

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Directional limits on persistent gravitational waves using LIGO S5 science data

    Get PDF
    The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2 Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.Comment: 10 pages, 4 figure

    pygwb: Python-based library for gravitational-wave background searches

    Full text link
    The collection of gravitational waves (GWs) that are either too weak or too numerous to be individually resolved is commonly referred to as the gravitational-wave background (GWB). A confident detection and model-driven characterization of such a signal will provide invaluable information about the evolution of the Universe and the population of GW sources within it. We present a new, user-friendly Python--based package for gravitational-wave data analysis to search for an isotropic GWB in ground--based interferometer data. We employ cross-correlation spectra of GW detector pairs to construct an optimal estimator of the Gaussian and isotropic GWB, and Bayesian parameter estimation to constrain GWB models. The modularity and clarity of the code allow for both a shallow learning curve and flexibility in adjusting the analysis to one's own needs. We describe the individual modules which make up {\tt pygwb}, following the traditional steps of stochastic analyses carried out within the LIGO, Virgo, and KAGRA Collaboration. We then describe the built-in pipeline which combines the different modules and validate it with both mock data and real GW data from the O3 Advanced LIGO and Virgo observing run. We successfully recover all mock data injections and reproduce published results.Comment: 32 pages, 14 figure

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    The use of group dynamics strategies to enhance cohesion in a lifestyle intervention program for obese children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most research pertaining to childhood obesity has assessed the effectiveness of preventative interventions, while relatively little has been done to advance knowledge in the treatment of obesity. Thus, a 4-week family- and group-based intervention utilizing group dynamics strategies designed to increase cohesion was implemented to influence the lifestyles and physical activity levels of obese children.</p> <p>Methods/Design</p> <p>This paper provides an overview of the rationale for and implementation of the intervention for obese children and their families. Objectives of the intervention included the modification of health behaviors and cohesion levels through the use of group dynamics strategies. To date, a total of 15 children (7 boys and 8 girls, mean age = 10.5) and their families have completed the intervention (during the month of August 2008). Physiological and psychological outcomes were assessed throughout the 4-week intervention and at 3-, 6-, and 12-month follow-up periods.</p> <p>Discussion</p> <p>It is believed that the information provided will help researchers and health professionals develop similar obesity treatment interventions through the use of evidence-based group dynamics strategies. There is also a need for continued research in this area, and it is our hope that the Children's Health and Activity Modification Program (C.H.A.M.P.) will provide a strong base from which others may build.</p

    The development of a multidisciplinary fall risk evaluation tool for demented nursing home patients in the Netherlands

    Get PDF
    BACKGROUND: Demented nursing home patients are at high risk for falls. Falls and associated injuries can have a considerable influence on the autonomy and quality of life of patients. The prevention of falls among demented patients is therefore an important issue. In order to intervene in an efficient way in this group of patients, it is important to systematically evaluate the fall risk profile of each individual patient so that for each patient tailor-made preventive measures can be taken. Therefore, the objective of the present study is to develop a feasible and evidence based multidisciplinary fall risk evaluation tool to be used for tailoring preventive interventions to the needs of individual demented patients. METHODS: To develop this multidisciplinary fall risk evaluation tool we have chosen to combine scientific evidence on the one hand and experts' opinions on the other hand. Firstly, relevant risk factors for falling in elderly persons were gathered from the literature. Secondly, a group of Dutch experts in the field of falls and fall prevention in the elderly were consulted to judge the suitability of these risk factors for use in a multidisciplinary fall risk evaluation tool for demented nursing home patients. Thirdly, in order to generate a compact list of the most relevant risk factors for falling in demented elderly, all risk factors had to fulfill a set of criteria indicating their relevance for this specific target population. Lastly the final list of risk factors resulting from the above mentioned procedure was presented to the expert group. The members were also asked to give their opinion about the practical use of the tool. RESULTS: The multidisciplinary fall risk evaluation tool we developed includes the following items: previous falls, use of medication, locomotor functions, and (correct) choice and use of assistive and protective devices. The tool is developed for the multidisciplinary teams of the nursing homes. CONCLUSION: This evidence and practice based multidisciplinary fall risk evaluation tool targets the preventive interventions aimed to prevent falls and their negative consequences in demented nursing home patients
    corecore