160 research outputs found
Parity and body mass index in US women: a prospective 25-year study.
ObjectiveTo investigate long-term body mass index (BMI) changes associated with childbearing.Design and methodsAdjusted mean BMI changes were estimated by race-ethnicity, baseline BMI, and parity using longitudinal regression models for 3,943 young females over 10 and 25 year follow-up from the ongoing 1979 National Longitudinal Survey of Youth cohort.ResultsEstimated BMI increases varied by group, ranging from a low of 2.1 BMI units for white, non-overweight nulliparas over the first 10 years to a high of 10.1 BMI units for black, overweight multiparas over the full 25-year follow-up. Impacts of parity were strongest among overweight multiparas and primaparas at 10 years, ranges 1.4-1.7 and 0.8-1.3 BMI units, respectively. Among non-overweight women, parity-related gain at 10 years varied by number of births among black and white but not Hispanic women. After 25 years, childbearing significantly increased BMI only among overweight multiparous black women.ConclusionChildbearing is associated with permanent weight gain in some women, but the relationship differs by maternal BMI in young adulthood, number of births, race-ethnicity, and length of follow-up. Given that overweight black women may be at special risk for accumulation of permanent, long-term weight after childbearing, effective interventions for this group are particularly needed
Orbital parameters, masses and distance to Beta Centauri determined with the Sydney University Stellar Interferometer and high resolution spectroscopy
The bright southern binary star beta Centauri (HR 5267) has been observed
with the Sydney University Stellar Interferometer (SUSI) and spectroscopically
with the ESO CAT and Swiss Euler telescopes at La Silla. The interferometric
observations have confirmed the binary nature of the primary component and have
enabled the determination of the orbital parameters of the system. At the
observing wavelength of 442 nm the two components of the binary system have a
magnitude difference of 0.15. The combination of interferometric and
spectroscopic data gives the following results: orbital period 357 days,
semi-major axis 25.30 mas, inclination 67.4 degrees, eccentricity 0.821,
distance 102.3 pc, primary and secondary masses M1 = M2 = 9.1 solar masses and
absolute visual magnitudes of the primary and secondary M1V = -3.85 and M2V =
-3.70. The high accuracy of the results offers a fruitful starting point for
future asteroseismic modelling of the pulsating binary components.Comment: 10 pages, 4 figures. Accepted for publication in MNRA
Near Infrared Light Induced Radical Polymerization in Water
We introduce a gold nanorod (AuNR) driven methodology to induce free radical polymerization in water with near infrared light (800â
nm). The process exploits photothermal conversion in AuNR and subsequent heat transfer to a radical initiator (here azobisisobutyronitrile) for primary radical generation. A broad range of reaction conditions were investigated, demonstrating control over molecular weight and reaction conversion of dimethylacrylamide polymers, using nuclear magnetic resonance spectroscopy. We underpin our experimental data with finite element simulation of the spatio-temporal temperature profile surrounding the AuNR directly after femtosecond laser pulse excitation. Critically, we evidence that polymerization can be induced through biological tissues given the enhanced penetration depth of the near infrared light. We submit that the presented initiation mechanism in aqueous systems holds promise for radical polymerization in biological environments, including cells
A Black Womenâs Health Agenda: Applying an Intersectional Systems Approach and Reproductive Justice Lens
The Reproductive Justice (RJ) framework states that it is a âhuman right to maintain personal bodily autonomy, have children, not have children, and parent children in safe and sustainable communities.â RJ is critical in addressing the glaring racial, ethnic, social and economic inequities that exist in Allegheny County and surrounding areas. Black women and femmes carry the disproportionate burden of health inequities in Allegheny County, but their lives and experiences are not centered in the development and execution of solutions. Black women/femmes throughout the county lead critical work to address a multitude of inequities, often with limited support and resources. Concurrently, they deal with multiple systems of oppression designed to devalue and derail their work. This Pitt Teaming Grant proposal is designed to: A) Uplift the ongoing work led by Black women and femmes; B) Interrogate systems that exacerbate inequities in health C) Develop plans for dismantling systems of oppression specifically in Allegheny County that have a disproportionate impact on the health and well-being of Black women/femmes. The specific aims of this proposal are: Aim 1. Investigate if and how systems (health and social) may or may not address the health and well-being of Black women and femmes in Allegheny County and surrounding areas. This will include an environmental scan of existing programs, policies and local funding resulting in Black Paper and compendium of equity assessment tools and frameworks for further use by the team and others in the larger community. Aim 2. Develop a strategic plan and health agenda focused on centering the health and well-being of Black women and femmes in Allegheny County that includes actions related to research, practice and policy. The Black Womenâs Health Agenda for Allegheny County will be developed through continuous community engagement and facilitation from Black-women led experts in strategic development
Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. II. Test of Theoretical Stellar Isochrones
We perform an extensive test of theoretical stellar models for main-sequence
stars in ugriz, using cluster fiducial sequences obtained in the previous paper
of this series. We generate a set of isochrones using the Yale Rotating
Evolutionary Code (YREC) with updated input physics, and derive magnitudes and
colors in ugriz from MARCS model atmospheres. These models match cluster main
sequences over a wide range of metallicity within the errors of the adopted
cluster parameters. However, we find a large discrepancy of model colors at the
lower main sequence (Teff < ~4500 K) for clusters at and above solar
metallicity. We also reach similar conclusions using the theoretical isochrones
of Girardi et al. and Dotter et al., but our new models are generally in better
agreement with the data. Using our theoretical isochrones, we also derive
main-sequence fitting distances and turn-off ages for five key globular
clusters, and demonstrate the ability to derive these quantities from
photometric data in the Sloan Digital Sky Survey. In particular, we exploit
multiple color indices (g - r, g - i, and g - z) in the parameter estimation,
which allows us to evaluate internal systematic errors. Our distance estimates,
with an error of sigma(m - M) = 0.03-0.11 mag for individual clusters, are
consistent with Hipparcos-based subdwarf fitting distances derived in the
Johnson-Cousins or Stromgren photometric systems.Comment: 26 pages, 28 figures. Accepted for publication in ApJ. Version with
high resolution figures available at
http://spider.ipac.caltech.edu/~deokkeun/sdss_iso.pd
An improved retrieval of tropospheric nitrogen dioxide from GOME
We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude-dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMF by 20â30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p < 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal region of South Africa and industrial regions of the northeast United States and Europe. They are lower over Houston, India, eastern Asia, and the biomass burning region of central Africa, possibly because of biases from absorbing aerosols
Test of lepton universality in decays
The first simultaneous test of muon-electron universality using
and decays is performed, in two ranges of the dilepton
invariant-mass squared, . The analysis uses beauty mesons produced in
proton-proton collisions collected with the LHCb detector between 2011 and
2018, corresponding to an integrated luminosity of 9 . Each
of the four lepton universality measurements reported is either the first in
the given interval or supersedes previous LHCb measurements. The
results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb
public pages
Measurement of lepton universality parameters in and decays
A simultaneous analysis of the and decays is performed to test muon-electron universality in
two ranges of the square of the dilepton invariant mass, . The measurement
uses a sample of beauty meson decays produced in proton-proton collisions
collected with the LHCb detector between 2011 and 2018, corresponding to an
integrated luminosity of . A sequence of multivariate
selections and strict particle identification requirements produce a higher
signal purity and a better statistical sensitivity per unit luminosity than
previous LHCb lepton universality tests using the same decay modes. Residual
backgrounds due to misidentified hadronic decays are studied using data and
included in the fit model. Each of the four lepton universality measurements
reported is either the first in the given interval or supersedes previous
LHCb measurements. The results are compatible with the predictions of the
Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-045.html (LHCb
public pages
- âŠ