160 research outputs found

    Parity and body mass index in US women: a prospective 25-year study.

    Get PDF
    ObjectiveTo investigate long-term body mass index (BMI) changes associated with childbearing.Design and methodsAdjusted mean BMI changes were estimated by race-ethnicity, baseline BMI, and parity using longitudinal regression models for 3,943 young females over 10 and 25 year follow-up from the ongoing 1979 National Longitudinal Survey of Youth cohort.ResultsEstimated BMI increases varied by group, ranging from a low of 2.1 BMI units for white, non-overweight nulliparas over the first 10 years to a high of 10.1 BMI units for black, overweight multiparas over the full 25-year follow-up. Impacts of parity were strongest among overweight multiparas and primaparas at 10 years, ranges 1.4-1.7 and 0.8-1.3 BMI units, respectively. Among non-overweight women, parity-related gain at 10 years varied by number of births among black and white but not Hispanic women. After 25 years, childbearing significantly increased BMI only among overweight multiparous black women.ConclusionChildbearing is associated with permanent weight gain in some women, but the relationship differs by maternal BMI in young adulthood, number of births, race-ethnicity, and length of follow-up. Given that overweight black women may be at special risk for accumulation of permanent, long-term weight after childbearing, effective interventions for this group are particularly needed

    Orbital parameters, masses and distance to Beta Centauri determined with the Sydney University Stellar Interferometer and high resolution spectroscopy

    Get PDF
    The bright southern binary star beta Centauri (HR 5267) has been observed with the Sydney University Stellar Interferometer (SUSI) and spectroscopically with the ESO CAT and Swiss Euler telescopes at La Silla. The interferometric observations have confirmed the binary nature of the primary component and have enabled the determination of the orbital parameters of the system. At the observing wavelength of 442 nm the two components of the binary system have a magnitude difference of 0.15. The combination of interferometric and spectroscopic data gives the following results: orbital period 357 days, semi-major axis 25.30 mas, inclination 67.4 degrees, eccentricity 0.821, distance 102.3 pc, primary and secondary masses M1 = M2 = 9.1 solar masses and absolute visual magnitudes of the primary and secondary M1V = -3.85 and M2V = -3.70. The high accuracy of the results offers a fruitful starting point for future asteroseismic modelling of the pulsating binary components.Comment: 10 pages, 4 figures. Accepted for publication in MNRA

    Near Infrared Light Induced Radical Polymerization in Water

    Get PDF
    We introduce a gold nanorod (AuNR) driven methodology to induce free radical polymerization in water with near infrared light (800 nm). The process exploits photothermal conversion in AuNR and subsequent heat transfer to a radical initiator (here azobisisobutyronitrile) for primary radical generation. A broad range of reaction conditions were investigated, demonstrating control over molecular weight and reaction conversion of dimethylacrylamide polymers, using nuclear magnetic resonance spectroscopy. We underpin our experimental data with finite element simulation of the spatio-temporal temperature profile surrounding the AuNR directly after femtosecond laser pulse excitation. Critically, we evidence that polymerization can be induced through biological tissues given the enhanced penetration depth of the near infrared light. We submit that the presented initiation mechanism in aqueous systems holds promise for radical polymerization in biological environments, including cells

    A Black Women’s Health Agenda: Applying an Intersectional Systems Approach and Reproductive Justice Lens

    Get PDF
    The Reproductive Justice (RJ) framework states that it is a “human right to maintain personal bodily autonomy, have children, not have children, and parent children in safe and sustainable communities.” RJ is critical in addressing the glaring racial, ethnic, social and economic inequities that exist in Allegheny County and surrounding areas. Black women and femmes carry the disproportionate burden of health inequities in Allegheny County, but their lives and experiences are not centered in the development and execution of solutions. Black women/femmes throughout the county lead critical work to address a multitude of inequities, often with limited support and resources. Concurrently, they deal with multiple systems of oppression designed to devalue and derail their work. This Pitt Teaming Grant proposal is designed to: A) Uplift the ongoing work led by Black women and femmes; B) Interrogate systems that exacerbate inequities in health C) Develop plans for dismantling systems of oppression specifically in Allegheny County that have a disproportionate impact on the health and well-being of Black women/femmes. The specific aims of this proposal are: Aim 1. Investigate if and how systems (health and social) may or may not address the health and well-being of Black women and femmes in Allegheny County and surrounding areas. This will include an environmental scan of existing programs, policies and local funding resulting in Black Paper and compendium of equity assessment tools and frameworks for further use by the team and others in the larger community. Aim 2. Develop a strategic plan and health agenda focused on centering the health and well-being of Black women and femmes in Allegheny County that includes actions related to research, practice and policy. The Black Women’s Health Agenda for Allegheny County will be developed through continuous community engagement and facilitation from Black-women led experts in strategic development

    Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. II. Test of Theoretical Stellar Isochrones

    Get PDF
    We perform an extensive test of theoretical stellar models for main-sequence stars in ugriz, using cluster fiducial sequences obtained in the previous paper of this series. We generate a set of isochrones using the Yale Rotating Evolutionary Code (YREC) with updated input physics, and derive magnitudes and colors in ugriz from MARCS model atmospheres. These models match cluster main sequences over a wide range of metallicity within the errors of the adopted cluster parameters. However, we find a large discrepancy of model colors at the lower main sequence (Teff < ~4500 K) for clusters at and above solar metallicity. We also reach similar conclusions using the theoretical isochrones of Girardi et al. and Dotter et al., but our new models are generally in better agreement with the data. Using our theoretical isochrones, we also derive main-sequence fitting distances and turn-off ages for five key globular clusters, and demonstrate the ability to derive these quantities from photometric data in the Sloan Digital Sky Survey. In particular, we exploit multiple color indices (g - r, g - i, and g - z) in the parameter estimation, which allows us to evaluate internal systematic errors. Our distance estimates, with an error of sigma(m - M) = 0.03-0.11 mag for individual clusters, are consistent with Hipparcos-based subdwarf fitting distances derived in the Johnson-Cousins or Stromgren photometric systems.Comment: 26 pages, 28 figures. Accepted for publication in ApJ. Version with high resolution figures available at http://spider.ipac.caltech.edu/~deokkeun/sdss_iso.pd

    An improved retrieval of tropospheric nitrogen dioxide from GOME

    Get PDF
    We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude-dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMF by 20–30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p < 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal region of South Africa and industrial regions of the northeast United States and Europe. They are lower over Houston, India, eastern Asia, and the biomass burning region of central Africa, possibly because of biases from absorbing aerosols

    An epigenetic clock for gestational age at birth based on blood methylation data

    Get PDF

    Test of lepton universality in b→sℓ+ℓ−b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+→K+ℓ+ℓ−B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0→K∗0ℓ+ℓ−B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb−1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages

    Measurement of lepton universality parameters in B+→K+ℓ+ℓ−B^+\to K^+\ell^+\ell^- and B0→K∗0ℓ+ℓ−B^0\to K^{*0}\ell^+\ell^- decays

    Get PDF
    A simultaneous analysis of the B+→K+ℓ+ℓ−B^+\to K^+\ell^+\ell^- and B0→K∗0ℓ+ℓ−B^0\to K^{*0}\ell^+\ell^- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2q^2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 99 fb−1\text{fb}^{-1}. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2q^2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-045.html (LHCb public pages
    • 

    corecore