64 research outputs found

    Global variations in pubertal growth spurts in adolescents living with perinatal HIV

    Get PDF
    Objective: To describe pubertal growth spurts among adolescents living with perinatally-acquired HIV (ALWPHIV) on antiretroviral therapy (ART)./ Design: Observational data collected from 1994–2015 in the CIPHER global cohort collaboration./ Methods: ALWPHIV who initiated ART age <10 years with ≥4 height measurements age ≥8 were included. Super Imposition by Translation And Rotation (SITAR) models, with parameters representing timing and intensity of the growth spurt, were used to describe growth, separately by sex. Associations between region, ART regimen, age, height-for-age (HAZ), and BMI-for-age z-scores (BMIz) at ART initiation (baseline) and age 10 years and SITAR parameters were explored./ Results: 4,723 ALWPHIV were included: 51% from East and Southern Africa (excluding Botswana and South Africa), 17% Botswana and South Africa, 6% West and Central Africa, 11% Europe and North America, 11% Asia-Pacific, and 4% Central, South America, and Caribbean. Growth spurts were later and least intense in sub-Saharan regions. In females, older baseline age and lower BMIz at baseline were associated with later and more intense growth spurts; lower HAZ was associated with later growth spurts. In males, older baseline age and lower HAZ were associated with later and less intense growth spurts; however, associations between baseline HAZ and timing varied by age. Lower HAZ and BMIz at 10 years were associated with later and less intense growth spurts in both sexes./ Conclusions: ALWPHIV who started ART at older ages or already stunted were more likely to have delayed pubertal growth spurts. Longer-term follow-up is important to understand the impact of delayed growth.

    Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA

    Get PDF
    Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here, using the quantitative chromosome conformation capture assay, we show that, in the mouse liver, the endodermal enhancers have low contact frequencies with the Igf2 promoters but display, on the paternal chromosome, strong interactions with the intragenic differentially methylated regions 1 and 2. Interestingly, we found that enhancers also interact with a so-far poorly characterized intergenic region of the locus that produces a novel imprinted long non-coding transcript that we named the paternally expressed Igf2/H19 intergenic transcript (PIHit) RNA. PIHit is expressed exclusively from the paternal chromosome, contains a novel discrete differentially methylated region in a highly conserved sequence and, surprisingly, does not require an intact ICR/H19 gene region for its imprinting. Altogether, our data reveal a novel imprinted domain in the Igf2/H19 locus and lead us to propose a model for chromatin folding of this locus on the paternal chromosome

    Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination.

    Get PDF
    Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2's tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2's function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2's function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair

    Growth and CD4 patterns of adolescents living with perinatally acquired HIV worldwide, a CIPHER cohort collaboration analysis.

    Get PDF
    INTRODUCTION Adolescents living with HIV are subject to multiple co-morbidities, including growth retardation and immunodeficiency. We describe growth and CD4 evolution during adolescence using data from the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project. METHODS Data were collected between 1994 and 2015 from 11 CIPHER networks worldwide. Adolescents with perinatally acquired HIV infection (APH) who initiated antiretroviral therapy (ART) before age 10 years, with at least one height or CD4 count measurement while aged 10-17 years, were included. Growth was measured using height-for-age Z-scores (HAZ, stunting if <-2 SD, WHO growth charts). Linear mixed-effects models were used to study the evolution of each outcome between ages 10 and 17. For growth, sex-specific models with fractional polynomials were used to model non-linear relationships for age at ART initiation, HAZ at age 10 and time, defined as current age from 10 to 17 years of age. RESULTS A total of 20,939 and 19,557 APH were included for the growth and CD4 analyses, respectively. Half were females, two-thirds lived in East and Southern Africa, and median age at ART initiation ranged from 7 years in sub-Saharan African regions. At age 10, stunting ranged from 6% in North America and Europe to 39% in the Asia-Pacific; 19% overall had CD4 counts <500 cells/mm3 . Across adolescence, higher HAZ was observed in females and among those in high-income countries. APH with stunting at age 10 and those with late ART initiation (after age 5) had the largest HAZ gains during adolescence, but these gains were insufficient to catch-up with non-stunted, early ART-treated adolescents. From age 10 to 16 years, mean CD4 counts declined from 768 to 607 cells/mm3 . This decline was observed across all regions, in males and females. CONCLUSIONS Growth patterns during adolescence differed substantially by sex and region, while CD4 patterns were similar, with an observed CD4 decline that needs further investigation. Early diagnosis and timely initiation of treatment in early childhood to prevent growth retardation and immunodeficiency are critical to improving APH growth and CD4 outcomes by the time they reach adulthood

    Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged <it>in vivo </it>with <it>S. aureus</it>, <it>E. coli</it>, and <it>S. uberis</it>, samples from goats challenged <it>in vivo </it>with <it>S. aureus</it>, as well as cattle macrophages and ovine dendritic cells infected <it>in vitro </it>with <it>S. aureus</it>. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific.</p> <p>Results</p> <p>Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including <it>XBP1 </it>and <it>SREBF1</it>.</p> <p>The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of <it>E. coli </it>and <it>S. aureus </it>infections in cattle <it>in vivo </it>revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that <it>E. coli </it>caused a stronger host response.</p> <p>Conclusions</p> <p>This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources.</p

    Lytic xylan oxidases from wood-decay fungi unlock biomass degradation

    Get PDF
    Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-ef-fective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans—a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxida-tive cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Publisher's version (útgefin grein).Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.Alexander von Humboldt-StiftungPeer Reviewe
    corecore