1,106 research outputs found
The Calcineurin Antagonist, RCAN1-4 is Induced by Exhaustive Exercise in Rat Skeletal Muscle
International audienceThe aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress
Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli
Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, is accompanied by multiple mitochondrial alterations. Here, we show that mitochondrial fragmentation and cristae alterations characterize cellular models of HD and participate in their increased susceptibility to apoptosis. In HD cells, the increased basal activity of the phosphatase calcineurin dephosphorylates the pro-fission dynamin related protein 1 (Drp1), increasing its mitochondrial translocation and activation, and ultimately leading to fragmentation of the organelle. The fragmented HD mitochondria are characterized by cristae alterations that are aggravated by apoptotic stimulation. A genetic analysis indicates that correction of mitochondrial elongation is not sufficient to rescue the increased cytochrome c release and cell death observed in HD cells. Conversely, the increased apoptosis can be corrected by manoeuvres that prevent fission and cristae remodelling. In conclusion, the cristae remodelling of the fragmented HD mitochondria contributes to their hypersensitivity to apoptosis
Galaxy And Mass Assembly (GAMA) : galaxy close pairs, mergers and the future fate of stellar mass
ASGR acknowledges STFC and SUPA funding that were used to do this work. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions.We use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 10(8) and 10(12)M(circle dot). Using the analytic form of this fit we investigate the total stellar mass accreting on to more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging on to more massive companions is 2.0-5.6 per cent. Using the GAMA-II data we see no significant evidence for a change in the close pair fraction between redshift z = 0.05 and 0.2. However, we find a systematically higher fraction of galaxies in similar mass close pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function gamma(M) = A(1 + z)(m) to predict the major close pair fraction, we find fitting parameters of A = 0.021 +/- 0.001 and m = 1.53 +/- 0.08, which represents a higher low-redshift normalization and shallower power-law slope than recent literature values. We find that the relative importance of in situ star formation versus galaxy merging is inversely correlated, with star formation dominating the addition of stellar material below M* and merger accretion events dominating beyond M*. We find mergers have a measurable impact on the whole extent of the galaxy stellar mass function (GSMF), manifest as a deepening of the 'dip' in the GSMF over the next similar to Gyr and an increase in M* by as much as 0.01-0.05 dex.Publisher PDFPeer reviewe
Galaxy And Mass Assembly (GAMA): curation and reanalysis of 16.6k redshifts in the G10/COSMOS region
We discuss the construction of the Galaxy And Mass Assembly (GAMA) 10h region (G10) using publicly available data in the Cosmic Evolution Survey region (COSMOS) in order to extend the GAMA survey to z ∼ 1 in a single deg2 field. In order to obtain the maximum number of high precision spectroscopic redshifts we re-reduce all archival zCOSMOS-bright data and use the GAMA automatic cross-correlation redshift fitting code autoz. We use all available redshift information (autoz, zCOSMOS-bright 10k, PRIMUS, VVDS, SDSS and photometric redshifts) to calculate robust best-fitting redshifts for all galaxies and visually inspect all 1D and 2D spectra to obtain 16 583 robust redshifts in the full COSMOS region. We then define the G10 region to be the central ∼1 deg2 of COSMOS, which has relatively high spectroscopic completeness, and encompasses the CHILES VLA region. We define a combined r < 23.0 mag and i < 22.0 mag G10 sample (selected to have the highest bijective overlap) with which to perform future analysis, containing 9861 sources with reliable high-precision VLT-VIMOS spectra. All tables, spectra and imaging are available at http://ict.icrar.org/cutout/G10
Galaxy And Mass Assembly: the evolution of the cosmic spectral energy distribution from z = 1 to z = 0
We present the evolution of the cosmic spectral energy distribution (CSED) from z = 1 to 0. Our CSEDs originate from stacking individual spectral energy distribution (SED) fits based on panchromatic photometry from the Galaxy And Mass Assembly (GAMA) and COSMOS data sets in 10 redshift intervals with completeness corrections applied. Below z = 0.45, we have credible SED fits from 100 nm to 1 mm. Due to the relatively low sensitivity of the far-infrared data, our far-infrared CSEDs contain a mix of predicted and measured fluxes above z = 0.45. Our results include appropriate errors to highlight the impact of these corrections. We show that the bolometric energy output of the Universe has declined by a factor of roughly 4 – from 5.1 ± 1.0 at z ∼ 1 to 1.3 ± 0.3 × 1035 h70 W Mpc−3 at the current epoch. We show that this decrease is robust to cosmic sample variance, the SED modelling and other various types of error. Our CSEDs are also consistent with an increase in the mean age of stellar populations. We also show that dust attenuation has decreased over the same period, with the photon escape fraction at 150 nm increasing from 16 ± 3 at z ∼ 1 to 24 ± 5 per cent at the current epoch, equivalent to a decrease in AFUV of 0.4 mag. Our CSEDs account for 68 ± 12 and 61 ± 13 per cent of the cosmic optical and infrared backgrounds, respectively, as defined from integrated galaxy counts and are consistent with previous estimates of the cosmic infrared background with redshift
Do RCAN1 proteins link chronic stress with neurodegeneration?
It has long been suspected that chronic stress can exacerbate, or even cause, disease. We now propose that the RCAN1 gene, which can generate several RCAN1 protein isoforms, may be at least partially responsible for this phenomenon. We review data showing that RCAN1 proteins can be induced by multiple stresses, and present new data also implicating psychosocial/emotional stress in RCAN1 induction. We further show that transgenic mice overexpressing the RCAN1-1L protein exhibit accumulation of hyperphosphorylated tau protein (AT8 antibody), an early precursor to the formation of neurofibrillary tangles and neurodegeneration of the kind seen in Alzheimer disease. We propose that, although transient induction of the RCAN1 gene might protect cells against acute stress, persistent stress may cause chronic RCAN1 overexpression, resulting in serious side effects. Chronically elevated levels of RCAN1 proteins may promote or exacerbate various diseases, including tauopathies such as Alzheimer disease. We propose that the mechanism by which stress can lead to these diseases involves the inhibition of calcineurin and the induction of GSK-3 beta by RCAN1 proteins. Both inhibition of calcineurin and induction of GSK-3 beta contribute to accumulation of phosphorylated tau, formation of neurofibrillary tangles, and eventual neurodegeneration.-Ermak, G., Pritchard, M. A., Dronjak, S., Niu, B., Davies, K. J. A. Do RCAN1 proteins link chronic stress with neurodegeneration? FASEB J. 25, 3306-3311 (2011). www.fasebj.or
Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley
We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with and classified according to their intrinsic colour. From single component S\'ersic fits, we find that the stellar mass-sensitive band profiles of red and green galaxy populations are very similar, while band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley ~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r\^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation
Galaxy And Mass Assembly (GAMA): stellar mass growth of spiral galaxies in the cosmic web
We look for correlated changes in stellar mass and star formation rate (SFR) along filaments in the cosmic web by examining the stellar masses and UV-derived SFRs of 1799 ungrouped and unpaired spiral galaxies that reside in filaments. We devise multiple distance metrics to characterize the complex geometry of filaments, and find that galaxies closer to the cylindrical centre of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. In addition, these peripheral spiral galaxies have higher SFRs at a given mass. Complementing our sample of filament spiral galaxies with spiral galaxies in tendrils and voids, we find that the average SFR of these objects in different large-scale environments are similar to each other with the primary discriminant in SFR being stellar mass, in line with previous works. However, the distributions of SFRs are found to vary with large-scale environment. Our results thus suggest a model in which in addition to stellar mass as the primary discriminant, the large-scale environment is imprinted in the SFR as a second-order effect. Furthermore, our detailed results for filament galaxies suggest a model in which gas accretion from voids on to filaments is primarily in an orthogonal direction. Overall, we find our results to be in line with theoretical expectations of the thermodynamic properties of the intergalactic medium in different large-scale environments
Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley
We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M-*/M-circle dot) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Sersic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley similar to 1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a role in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation
The Oxygen Paradox, the French Paradox, and age-related diseases
open46openDavies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A.Davies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, HENRY J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A
- …