124 research outputs found
Influence of wiring cost on the large-scale architecture of human cortical connectivity
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain
Hypoxaemic load in sleep apnoea is associated with acute changes in T-wave amplitude
AimsObstructive sleep apnoea (OSA) imposes significant stress on the cardiovascular system and the heart. While long-term cardiac effects are understood, the immediate impact of hypoxaemia on the heart's electrophysiology lacks understanding. Our study aims to explore desaturation severity on cardiovascular repolarisation.MethodsWe retrospectively analysed ECGs from full diagnostic polysomnographies from 492 patients with suspected OSA. The analyses were conducted before, during and after 9137 nocturnal apnoea- or hypopnoea-related desaturations. The mean andsdof T-wave amplitude change from the baseline level to the level during and after desaturations (ΔTamp_meanand ΔTamp_SD) were calculated. To investigate the modulatory effects of desaturation severity, the data were divided into subgroups based on the desaturation duration (Tdes; 10 s≤Tdes<20 s, 20 s≤Tdes<30 s, 30 s≤Tdes<45 s and Tdes≥45 s) and magnitude of blood oxygen saturation drop (change in peripheral oxygen saturation (ΔSpO2); 3%≤ΔSpO2<4.5%, 4.5%≤ΔSpO2<6%, 6%≤ΔSpO2<7.5% and ΔSpO2≥7.5%) for men and women.ResultsDesaturations caused significant (p<0.01) changes in ΔTamp_meanduring and after desaturations. In men, the median ΔTamp_meanduring and after deep (ΔSpO2≥7.5%) desaturations were 21 µV and 24 µV, respectively. In women, the median ΔTamp_meanin deep desaturations was 15 µV during and 21 µV after desaturations. Similarly, the ΔTamp_SDincreased during and after deep desaturations. In regression analysis, the desaturation depth was an independent predictor for ventricular repolarisation instability.ConclusionWe found an association between the severity of nocturnal desaturations and cardiac repolarisation instability. These findings hold particular importance, as repolarisation instability has been linked with cardiovascular morbidity and could potentially serve as a trigger for arrhythmias and sudden cardiac death
Greater lifestyle engagement is associated with better age-adjusted cognitive abilities.
Previous evidence suggests that modifiable lifestyle factors, such as engagement in leisure activities, might slow the age-related decline of cognitive functions. Less is known, however, about which aspects of lifestyle might be particularly beneficial to healthy cognitive ageing, and whether they are associated with distinct cognitive domains (e.g. fluid and crystallized abilities) differentially. We investigated these questions in the cross-sectional Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data (N = 708, age 18-88), using data-driven exploratory structural equation modelling, confirmatory factor analyses, and age-residualized measures of cognitive differences across the lifespan. Specifically, we assessed the relative associations of the following five lifestyle factors on age-related differences of fluid and crystallized age-adjusted abilities: education/SES, physical health, mental health, social engagement, and intellectual engagement. We found that higher education, better physical and mental health, more social engagement and a greater degree of intellectual engagement were each individually correlated with better fluid and crystallized cognitive age-adjusted abilities. A joint path model of all lifestyle factors on crystallized and fluid abilities, which allowed a simultaneous assessment of the lifestyle domains, showed that physical health, social and intellectual engagement and education/SES explained unique, complementary variance, but mental health did not make significant contributions above and beyond the other four lifestyle factors and age. The total variance explained for fluid abilities was 14% and 16% for crystallized abilities. Our results are compatible with the hypothesis that intellectually and physically challenging as well as socially engaging activities are associated with better crystallized and fluid performance across the lifespan
Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences
Letter to the Editor
La estrategia en acción
Máster Universitario en Administración de Empresas (MBA), Grado en Ingeniería Electromecánica, Máster Universitario en Ingeniería de Telecomunicación, Máster Universitario en Ingeniería Industria
The added value of participatory modelling in fisheries management – what has been learnt?
How can uncertain fisheries science be linked with good governance processes, thereby increasing fisheries management legitimacy and effectiveness? Reducing the uncertainties around scientific models has long been perceived as the cure of the fisheries management problem. There is however increasing recognition that uncertainty in the numbers will remain. A lack of transparency with respect to these uncertainties can damage the credibility of science. The EU Commission's proposal for a reformed Common Fisheries Policy calls for more self-management for the fishing industry by increasing fishers' involvement in the planning and execution of policies and boosting the role of fishers' organisations. One way of higher transparency and improved participation is to include stakeholders in the modelling process itself. The JAKFISH project (Judgment And Knowledge in Fisheries Involving StakeHolders) invited fisheries stakeholders to participate in the process of framing the management problem, and to give input and evaluate the scientific models that are used to provide fisheries management advice. JAKFISH investigated various tools to assess and communicate uncertainty around fish stock assessments and fisheries management. Here, a synthesis is presented of the participatory work carried out in four European fishery case studies (Western Baltic herring, North Sea Nephrops, Central Baltic Herring and Mediterranean swordfish), focussing on the uncertainty tools used, the stakeholders' responses to these, and the lessons learnt. It is concluded that participatory modelling has the potential to facilitate and structure discussions between scientists and stakeholders about uncertainties and the quality of the knowledge base. It can also contribute to collective learning, increase legitimacy, and advance scientific understanding. However, when approaching real-life situations, modelling should not be seen as the priority objective. Rather, the crucial step in a science–stakeholder collaboration is the joint problem framing in an open, transparent way
Activity and Connectivity Differences Underlying Inhibitory Control Across the Adult Life Span.
Inhibitory control requires precise regulation of activity and connectivity within multiple brain networks. Previous studies have typically evaluated age-related changes in regional activity or changes in interregional interactions. Instead, we test the hypothesis that activity and connectivity make distinct, complementary contributions to performance across the life span and the maintenance of successful inhibitory control systems. A representative sample of healthy human adults in a large, population-based life span cohort performed an integrated Stop-Signal (SS)/No-Go task during functional magnetic resonance imaging (n = 119; age range, 18-88 years). Individual differences in inhibitory control were measured in terms of the SS reaction time (SSRT), using the blocked integration method. Linear models and independent components analysis revealed that individual differences in SSRT correlated with both activity and connectivity in a distributed inhibition network, comprising prefrontal, premotor, and motor regions. Importantly, this pattern was moderated by age, such that the association between inhibitory control and connectivity, but not activity, differed with age. Multivariate statistics and out-of-sample validation tests of multifactorial functional organization identified differential roles of activity and connectivity in determining an individual's SSRT across the life span. We propose that age-related differences in adaptive cognitive control are best characterized by the joint consideration of multifocal activity and connectivity within distributed brain networks. These insights may facilitate the development of new strategies to support cognitive ability in old age.SIGNIFICANCE STATEMENT The preservation of cognitive and motor control is crucial for maintaining well being across the life span. We show that such control is determined by both activity and connectivity within distributed brain networks. In a large, population-based cohort, we used a novel whole-brain multivariate approach to estimate the functional components of inhibitory control, in terms of their activity and connectivity. Both activity and connectivity in the inhibition network changed with age. But only the association between performance and connectivity, not activity, differed with age. The results suggest that adaptive control is best characterized by the joint consideration of multifocal activity and connectivity. These insights may facilitate the development of new strategies to maintain cognitive ability across the life span in health and disease
Beat-to-beat cardiac repolarization lability increases during hypoxemia and arousals in obstructive sleep apnea patients
Obstructive sleep apnea (OSA) is associated with the progression of cardiovascular diseases, arrhythmias, and sudden cardiac death (SCD). However, the acute impacts of OSA and its consequences on heart function are not yet fully elucidated. We hypothesized that desaturation events acutely destabilize ventricular repolarization, and the presence of accompanying arousals magnifies this destabilization. Ventricular repolarization lability measures, comprising heart rate corrected QT (QTc), short-time-variability of QT (STVQT), and QT variability index (QTVI), were calculated before, during, and after 20,955 desaturations from lead II electrocardiography signals of 492 patients with suspected OSA (52% men). Variations in repolarization parameters were assessed during and after desaturations, both with and without accompanying arousals, and groupwise comparisons were performed based on desaturation duration and depth. Regression analyses were used to investigate the influence of confounding factors, comorbidities, and medications. The standard deviation (SD) of QT, mean QTc, SDQTc, and STVQT increased significantly (P < 0.01), whereas QTVI decreased (P < 0.01) during and after desaturations. The changes in SDQT, mean QTc, SDQTc, and QTVI were significantly amplified (P < 0.01) in the presence of accompanying arousals. Desaturation depth was an independent predictor of increased SDQTc (β = 0.405, P < 0.01), STVQT (β = 0.151, P < 0.01), and QTVI (β = 0.009, P < 0.01) during desaturation. Desaturations cause acute changes in ventricular repolarization, with deeper desaturations and accompanying arousals independently contributing to increased ventricular repolarization lability. This may partially explain the increased risk of arrhythmias and SCD in patients with OSA, especially when the OSA phenotype includes high hypoxic load and fragmented sleep
Inhibition of oocyte growth factors in vivo modulates ovarian folliculogenesis in neonatal and immature mice
Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are among the key regulators transmitting the signaling between the oocyte and the surrounding granulosa cells. Previously, it has been shown that a recombinant BMP type II receptor ectodomain–Fc fusion protein (BMPR2ecd–Fc) is able to inhibit the actions of GDF9 and BMP15in vitro. Here, we have produced bioactive BMPR2ecd–Fc, which was injected i.p. into neonatal mice. Early folliculogenesis was first studied by injecting mice five times with various doses of BMPR2ecd–Fc during the postnatal days 4–12. Folliculogenesis was affected dose dependently, as evidenced by a decreased mitogenesis of granulosa cells of the growing follicles. Furthermore, we also noticed a decrease in the number of secondary and tertiary follicles as well as an increase in the oocyte size. Electron microscopic analysis revealed that the ultrastructure of the granulosa cells of the primary follicles was not affected by the BMPR2ecd–Fc treatment. A second study was conducted to investigate whether a longer treatment with 12 injections during postnatal days 4–28 would inhibit folliculogenesis. Similar effects were observed in the two studies on the early follicular developmental stages. However, in the long-term study, later stages of folliculogenesis were not blocked but rather increased numbers of antral follicles, preovulatory follicles, and corpora lutea were found. We conclude that BMPR2ecd–Fc is a potent modulator of ovarian folliculogenesisin vivo, and thus, is a valuable tool for studying the physiology and downstream effects of oocyte-derived growth factorsin vivo
- …
