38 research outputs found
Role of conservative mutations in protein multi-property adaptation
Protein physicochemical properties must undergo complex changes during evolution, as a response to modifications in the organism environment, the result of the proteins taking up new roles or because of the need to cope with the evolution of molecular interacting partners. Recent work has emphasized the role of stability and stability–function trade-offs in these protein adaptation processes. In the present study, on the other hand, we report that combinations of a few conservative, high-frequency-of-fixation mutations in the thioredoxin molecule lead to largely independent changes in both stability and the diversity of catalytic mechanisms, as revealed by single-molecule atomic force spectroscopy. Furthermore, the changes found are evolutionarily significant, as they combine typically hyperthermophilic stability enhancements with modulations in function that span the ranges defined by the quite different catalytic patterns of thioredoxins from bacterial and eukaryotic origin. These results suggest that evolutionary protein adaptation may use, in some cases at least, the potential of conservative mutations to originate a multiplicity of evolutionarily allowed mutational paths leading to a variety of protein modulation patterns. In addition the results support the feasibility of using evolutionary information to achieve protein multi-feature optimization, an important biotechnological goal
Socio-geographical disparities of obesity and excess weight in adults in Spain: insights from the ENE-COVID study
Background: In Spain, differences in the prevalence of obesity and excess weight according to sex and sociodemographic factors have been described at the national level, although current data do not allow to delve into geographical differences for these conditions. The aim was to estimate national and regional prevalences of adult obesity and excess weight in Spain by sex and sociodemographic characteristics, and to explore difference sources of inequalities in its distribution, as well as its geographical pattern. Method: ENE-COVID study was a nationwide representative seroepidemiological survey with 57,131 participants. Residents in 35,893 households were selected from municipal rolls using a two-stage random sampling stratified by province and municipality size (April-June 2020). Participants (77.0% of contacted individuals) answered a questionnaire which collected self-reported weight and height, as well as different socioeconomic variables, that allowed estimating crude and standardized prevalences of adult obesity and excess weight. Results: Crude prevalences of obesity and excess weight were higher in men (obesity: 19.3% vs. 18.0%; excess weight: 63.7% vs. 48.4%), while severe obesity was more prevalent in women (4.5% vs. 5.3%). These prevalences increased with age and disability, and decreased with education, census tract income and municipality size. Differences by educational level, relative census income, nationality or disability were clearly higher among women. Obesity by province ranged 13.3-27.4% in men and 11.4-28.1% in women; excess weight ranged 57.2-76.0% in men and 38.9-59.5% in women. The highest prevalences were located in the southern half of the country and some north-western provinces. Sociodemographic characteristics only explained a small part of the observed geographical variability (25.2% obesity). Conclusion: Obesity and overweight have a high prevalence in Spain, with notable geographical and sex differences. Socioeconomic inequalities are stronger among women. The observed geographical variability suggests the need to implement regional and local interventions to effectively address this public health problem.This study was supported by Spanish Ministry of Health, Institute of Health Carlos III, and Spanish National Health System.S
The emerging landscape of single-molecule protein sequencing technologies
Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.This Perspective describes new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell proteomics.</p
Cooperación al desarrollo y entornos virtuales de aprendizaje: nuevos recursos para un nuevo escenario de formación postgrado
El objetivo del presente trabajo es ofertar un apoyo no presencial que facilite mayor acceso a una formación postgrado inter-universitaria de calidad y que permitan a cada estudiante vencer su limitación espacio-temporal y optimizar su esfuerzo en función de su motivación, lo que supone una conciliación académica /profesional /familiar. La metodología utilizada será el conocimiento del manejo instrumental de la plataforma Moodle, entendiendo sus posibilidades técnicas. Analizando el uso las posibilidades didácticas y limitaciones de las herramientas de la plataforma en la enseñanza post grado de nuestro tema de interés. Enfocando la actuación en el aprendizaje participativo en vez de en la enseñanza expositiva: equilibrar conceptos y competencias. Diseñando nuevas coreografías didácticas acordes a entornos virtuales que ayuden al estudiante a evolucionar del aprendizaje rutinario al estratégico. Evidenciando la trascendencia de la investigación bibliográfica en la investigación aplicada. Potenciando el uso racional de TICs e incluir el uso de gestores bibliográficos para maximizar su aprovechamiento. Facilitando estrategias de mejora o correctivas frente a necesidades individuales causadas por diferencias de ritmo de aprendizaje. Estimulando el trabajo cooperativo, valorando especialmente la interdependencia positiva.Fil: Graiff, Diego Sebastián. Universidad Católica de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Boggio, Juan Carlos. Universidad Católica de Córdoba.Facultad de Ciencias Agropecuarias; ArgentinaFil: Litterio, Nicolás Javier. Universidad Católica de Córdoba.Facultad de Ciencias Agropecuarias; Argentin
Cooperación al desarrollo y entornos virtuales de aprendizaje: nuevos recursos para un nuevo escenario de formación postgrado
El objetivo del presente trabajo es ofertar un apoyo no presencial que facilite mayor acceso a una formación postgrado inter-universitaria de calidad y que permitan a cada estudiante vencer su limitación espacio-temporal y optimizar su esfuerzo en función de su motivación, lo que supone una conciliación académica /profesional /familiar. La metodología utilizada será el conocimiento del manejo instrumental de la plataforma Moodle, entendiendo sus posibilidades técnicas. Analizando el uso las posibilidades didácticas y limitaciones de las herramientas de la plataforma en la enseñanza post grado de nuestro tema de interés. Enfocando la actuación en el aprendizaje participativo en vez de en la enseñanza expositiva: equilibrar conceptos y competencias. Diseñando nuevas coreografías didácticas acordes a entornos virtuales que ayuden al estudiante a evolucionar del aprendizaje rutinario al estratégico. Evidenciando la trascendencia de la investigación bibliográfica en la investigación aplicada. Potenciando el uso racional de TICs e incluir el uso de gestores bibliográficos para maximizar su aprovechamiento. Facilitando estrategias de mejora o correctivas frente a necesidades individuales causadas por diferencias de ritmo de aprendizaje. Estimulando el trabajo cooperativo, valorando especialmente la interdependencia positiva.Fil: Graiff, Diego Sebastián. Universidad Católica de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Boggio, Juan Carlos. Universidad Católica de Córdoba.Facultad de Ciencias Agropecuarias; ArgentinaFil: Litterio, Nicolás Javier. Universidad Católica de Córdoba.Facultad de Ciencias Agropecuarias; Argentin
Probing the Mutational Interplay between Primary and Promiscuous Protein Functions: A Computational-Experimental Approach
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes
Family Firms and Firm Performance: Evidence from Japan
Corrigendum: Nature Structural and Molecular Biology 16 (12), 1331 (2009) doi:10.1038/nsmb1209-1331bInternational audienceThioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis
The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues
Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.This work was supported by grants from the Norwegian Cancer Society (to ØH), Junta de Andalucía, grant CVI-02483 (to JMSR), The Research Council of Norway (grant 185181 to A.M.), the Western Norway Health Authorities (grant 911618 to A.M.) and The Kristian Gerhard Jebsen Foundation (to AM)
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
On-surface condensation of low-dimensional benzotriazole–copper assemblies
The reactivity of benzotriazole with copper on a gold surface has been studied by a combination of surface sensitive methods with support from DFT (density functional theory) calculations. For some time benzotriazole has been known to enhance the corrosion resistance of copper at the monolayer level, although the exact mechanism is still a matter of discussion and disagreement in the literature. A single crystal Au(111) surface allows to evaluate the interaction of weakly physisorbed, intact benzotriazole molecules with copper atoms dosed to sub-monolayer amounts. These interactions have been characterised, in the temperature range ca. 300 – 650 K, by scanning tunnelling microscopy, high resolution electron energy loss spectroscopy and synchrotron-based X-ray photoemission spectroscopy and near-edged X-ray absorption fine structure studies. Supporting DFT calculations considered the stability of isolated, gas-phase, benzotriazole/Cu species and their corresponding spectroscopic signature at the N K absorption edge. In agreement with previous investigations, benzotriazole physisorbs on a clean Au(111) surface at room temperature forming a hydrogen-bonded network of flat-lying BTAH molecules, relatively weakly bonded to the underlying gold surface. However, in the presence of co-adsorbed copper atoms, proton removal from the molecules leads to species better described as BTA- interacting directly with Cu atoms. In these situations the molecules adopt a more upright orientation and Cu(BTA)2 and -[Cu(BTA)]n- species are formed, depending on temperature and coverage of the adsorbed species. These species are stable to relatively high temperatures, 550 – 600 K