275 research outputs found
Listening and watching : do camera traps or acoustic sensors more efficiently detect wild chimpanzees in an open habitat?
This work was supported by the Primate Society of Great Britain through the Cyril Rosen Conservation Grant. Long term funding for ongoing research at Issa is supported by the UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA).1. With one million animal species at risk of extinction, there is an urgent need to regularly monitor threatened species. However, in practice this is challenging, especially with wideâranging, elusive and cryptic species or those that occur at low density. 2. Here we compare two nonâinvasive methods, passive acoustic monitoring (n=12) and camera trapping (n=53), to detect chimpanzees (Pan troglodytes) in a savannaâwoodland mosaic habitat at the Issa Valley, Tanzania. With occupancy modelling we evaluate the efficacy of each method, using the estimated number of sampling days needed to establish chimpanzee absence with 95% probability, as our measure of efficacy. 3. Passive acoustic monitoring was more efficient than camera trapping in detecting wild chimpanzees. Detectability varied over seasons, likely due to social and ecological factors that influence party size and vocalisation rate. The acoustic method can infer chimpanzee absence with less than ten days of recordings in the field during the late dry season, the period of highest detectability, which was five times faster than the visual method. 4. Synthesis and applications: Despite some technical limitations, we demonstrate that passive acoustic monitoring is a powerful tool for species monitoring. Its applicability in evaluating presence/absence, especially but not exclusively for loud call species, such as cetaceans, elephants, gibbons or chimpanzees provides a more efficient way of monitoring populations and inform conservation plans to mediate speciesâloss.PostprintPeer reviewe
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods.
Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a "cell squasher" to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods
Global Burden of Sickle Cell Anaemia in Children under Five, 2010-2050: Modelling Based on Demographics, Excess Mortality, and Interventions
The global burden of sickle cell anaemia (SCA) is set to rise as a consequence of improved survival in high-prevalence low- and middle-income countries and population migration to higher-income countries. The host of quantitative evidence documenting these changes has not been assembled at the global level. The purpose of this study is to estimate trends in the future number of newborns with SCA and the number of lives that could be saved in under-five children with SCA by the implementation of different levels of health interventions.First, we calculated projected numbers of newborns with SCA for each 5-y interval between 2010 and 2050 by combining estimates of national SCA frequencies with projected demographic data. We then accounted for under-five mortality (U5m) projections and tested different levels of excess mortality for children with SCA, reflecting the benefits of implementing specific health interventions for under-five patients in 2015, to assess the number of lives that could be saved with appropriate health care services. The estimated number of newborns with SCA globally will increase from 305,800 (confidence interval [CI]: 238,400-398,800) in 2010 to 404,200 (CI: 242,500-657,600) in 2050. It is likely that Nigeria (2010: 91,000 newborns with SCA [CI: 77,900-106,100]; 2050: 140,800 [CI: 95,500-200,600]) and the Democratic Republic of the Congo (2010: 39,700 [CI: 32,600-48,800]; 2050: 44,700 [CI: 27,100-70,500]) will remain the countries most in need of policies for the prevention and management of SCA. We predict a decrease in the annual number of newborns with SCA in India (2010: 44,400 [CI: 33,700-59,100]; 2050: 33,900 [CI: 15,900-64,700]). The implementation of basic health interventions (e.g., prenatal diagnosis, penicillin prophylaxis, and vaccination) for SCA in 2015, leading to significant reductions in excess mortality among under-five children with SCA, could, by 2050, prolong the lives of 5,302,900 [CI: 3,174,800-6,699,100] newborns with SCA. Similarly, large-scale universal screening could save the lives of up to 9,806,000 (CI: 6,745,800-14,232,700) newborns with SCA globally, 85% (CI: 81%-88%) of whom will be born in sub-Saharan Africa. The study findings are limited by the uncertainty in the estimates and the assumptions around mortality reductions associated with interventions.Our quantitative approach confirms that the global burden of SCA is increasing, and highlights the need to develop specific national policies for appropriate public health planning, particularly in low- and middle-income countries. Further empirical collaborative epidemiological studies are vital to assess current and future health care needs, especially in Nigeria, the Democratic Republic of the Congo, and India
Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies
Studies on the dependence of the rates of ecosystem gas exchange on environmental parameters often rely on the up-scaling of leaf-level response curves ('bottom-up' approach), and/or the down-scaling of ecosystem fluxes ('top-down' approach), where one takes advantage of the natural diurnal covariation between the parameter of interest and photosynthesis rates. Partly independent from environmental variation, molecular circadian clocks drive âŒ24 h oscillations in leaf-level photosynthesis, stomatal conductance and other physiological processes in plants under controlled laboratory conditions. If present and of sufficient magnitude at ecosystem scales, circadian regulation could lead to different results when using the bottom-up approach (where circadian regulation exerts a negligible influence over fluxes because the environment is modified rapidly) relative to the top-down approach (where circadian regulation could affect fluxes as it requires the passage of a few hours). Here we dissected the drivers of diurnal net CO2 exchange in canopies of an annual herb (bean) and of a perennial shrub (cotton) through a set of experimental manipulations to test for the importance of circadian regulation of net canopy CO2 exchange, relative to that of temperature and vapor pressure deficit, and to understand whether circadian regulation could affect the derivation of environmental flux dependencies. Contrary to conventional wisdom, we observed how circadian regulation exerted controls over net CO2 exchange that were of similar magnitude to the controls exerted by direct physiological responses to temperature and vapor pressure deficit. Diurnal patterns of net CO2 exchange could only be explained by considering effects of environmental responses combined with circadian effects. Consequently, we observed significantly different results when inferring the dependence of photosynthesis over temperature and vapor pressure deficit when using the top-down and the bottom up approaches.We remain indebted to E. Gerardeau, D. Dessauw, J. Jean, P. Prudent (AĂŻda CIRAD), J.-J. Drevon, C. Pernot (Eco&Sol INRA), B. Buatois, A. Rocheteau (CEFE CNRS), A. Pra, A. Mokhtar and the full Ecotron team, in particular C. Escape, for outstanding technical assistance during experiment set-up, plant cultivation and measurements. Earlier versions of the manuscript benefitted from comments by M. Dietze, B. Medlyn, R. Duursma and Y.-S. Lin. This study benefited from the CNRS human and technical resources allocated to the ECOTRONS Research Infrastructures as well as from the state allocation âInvestissement d'Avenirâ ANR-11-INBS-0001, ExpeER Transnational Access program, RamĂłn y Cajal fellowships (RYC-2012-10970 to VRD and RYC-2008-02050 to JPF), the Erasmus Mundus Master Course Mediterranean Forestry and Natural Resources Management (MEDfOR) and internal grants from UWS-HIE to VRD and ZALF to AG. We thank the Associate Editor T. Vesala and two anonymous reviewers for their help to improve this manuscript
Chronic hypoxemia increases myocardial cytochrome oxidase
ObjectiveCyanotic patients have potentially decreased tissue oxygen tension. Cytochrome oxidase catalyzes the reduction of oxygen and is integral to adenosine triphosphate production. Cytochrome oxidase subunit I, the active site, is encoded by mitochondrial DNA. Using a newborn swine model of chronic hypoxemia, we evaluated ventricular cytochrome oxidase subunit I mRNA and protein expression and assessed cytochrome oxidase activity.MethodsThirty-two newborn piglets underwent thoracotomy and placement of a pulmonary arteryâtoâleft atrium shunt or sham operation. Two weeks later, partial pressure of arterial oxygen, hematocrit, and left ventricular shortening fraction values were compared with baseline values. Northern blot hybridization and protein immunoblotting for ventricular cytochrome oxidase subunit I were performed. Cytochrome oxidase kinetic activity was measured. Heme a,a3 content and turnover number were determined. Significance was assessed with a t test.ResultsBaseline partial pressure of arterial oxygen and hematocrit values were similar. Hypoxemic piglets had a lower partial pressure of arterial oxygen of 38 ± 10 mm Hg (P < .001) and higher hematocrit value of 31.4% ± 2.9% (P < .001) compared with a partial pressure of arterial oxygen of 140 ± 47 mm Hg and hematocrit value of 24.6% ± 3.9% after the sham operation. Baseline and postprocedure left ventricular shortening fraction were similar within and between groups. Chronic hypoxemia increased right ventricular and left ventricular cytochrome oxidase I mRNA and protein by more than 1.4-fold. Cytochrome oxidase activity increased significantly in hypoxemia by 2.5-fold compared with that seen after the sham operation. Heme a,a3 content and turnover number increased by 1.5-fold during hypoxemia.ConclusionsChronic hypoxemia increases cytochrome oxidase I message, protein expression, and activity. The increase in kinetics was due to increased enzyme content and catalytic activity. This is a possible adaptive mechanism that might preserve organ function during chronic hypoxemia
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-Îł exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria
Peer reviewe
Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions
Background Molecular clocks drive oscillations in leaf photosynthesis,
stomatal conductance, and other cell and leaf-level processes over ~24 h under
controlled laboratory conditions. The influence of such circadian regulation
over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux
dynamics in the field are currently interpreted as resulting almost
exclusively from direct physiological responses to variations in light,
temperature and other environmental factors. We tested whether circadian
regulation would affect plant and canopy gas exchange at the Montpellier
European Ecotron. Canopy and leaf-level fluxes were constantly monitored under
field-like environmental conditions, and under constant environmental
conditions (no variation in temperature, radiation, or other environmental
cues). Results We show direct experimental evidence at canopy scales of the
circadian regulation of daytime gas exchange: 20â79 % of the daily variation
range in CO2 and H2O fluxes occurred under circadian entrainment in canopies
of an annual herb (bean) and of a perennial shrub (cotton). We also observed
that considering circadian regulation improved performance by 8â17 % in
commonly used stomatal conductance models. Conclusions Our results show that
circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies
in field-like conditions, and its consideration significantly improves model
performance. Circadian controls act as a âmemoryâ of the past conditions
experienced by the plant, which synchronizes metabolism across entire plant
canopies
IDENTIFICATION OF OCCULT CEREBRAL MICROBLEEDS IN ADULTS WITH IMMUNE THROMBOCYTOPENIA
Management of symptoms and prevention of life-threatening hemorrhage in immune thrombocytopenia (ITP) must be balanced against adverse effects of therapies. Because current treatment guidelines based on platelet count are confounded by variable bleeding phenotypes, there is a need to identify new objective markers of disease severity for treatment stratification. In this cross-sectional prospective study of 49 patients with ITP and nadir platelet counts <30 Ă 109/L and 18 aged-matched healthy controls, we used susceptibility-weighted magnetic resonance imaging to detect cerebral microbleeds (CMBs) as a marker of occult hemorrhage. CMBs were detected using a semiautomated method and correlated with clinical metadata using multivariate regression analysis. No CMBs were detected in health controls. In contrast, lobar CMBs were identified in 43% (21 of 49) of patients with ITP; prevalence increased with decreasing nadir platelet count (0/4, â„15 Ă 109/L; 2/9, 10-14 Ă 109/L; 4/11, 5-9 Ă 109/L; 15/25 <5 Ă 109/L) and was associated with longer disease duration (P = 7 Ă 10â6), lower nadir platelet count (P = .005), lower platelet count at time of neuroimaging (P = .029), and higher organ bleeding scores (P = .028). Mucosal and skin bleeding scores, number of previous treatments, age, and sex were not associated with CMBs. Occult cerebral microhemorrhage is common in patients with moderate to severe ITP. Strong associations with ITP duration may reflect CMB accrual over time or more refractory disease. Further longitudinal studies in children and adults will allow greater understanding of the natural history and clinical and prognostic significance of CMBs
- âŠ