508 research outputs found

    Optimal Solutions of Multiproduct Batch Chemical Process Using Multiobjective Genetic Algorithm with Expert Decision System

    Get PDF
    Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples

    EXISTENCE AND UNIQUENESS RESULTS FOR A COUPLED SYSTEM OF HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS

    Get PDF
    In this paper, we have studied existence and uniqueness of solutions for a coupled system of multi-point boundary value problems for Hadamard fractional differential equations. By applying principle contraction and Shaefer's fixed point theorem new existence results have been obtained

    New Graphical Model for Computing Optimistic Decisions in Possibility Theory Framework

    Get PDF
    This paper first proposes a new graphical model for decision making under uncertainty based on min-based possibilistic networks. A decision problem under uncertainty is described by means of two distinct min-based possibilistic networks: the first one expresses agent's knowledge while the second one encodes agent's preferences representing a qualitative utility. We then propose an efficient algorithm for computing optimistic optimal decisions using our new model for representing possibilistic decision making under uncertainty. We show that the computation of optimal decisions comes down to compute a normalization degree of the junction tree associated with the graph resulting from the fusion of agent's beliefs and preferences. This paper also proposes an alternative way for computing optimal optimistic decisions. The idea is to transform the two possibilistic networks into two equivalent possibilistic logic knowledge bases, one representing agent's knowledge and the other represents agent's preferences. We show that computing an optimal optimistic decision comes down to compute the inconsistency degree of the union of the two possibilistic bases augmented with a given decision

    Multiple agent possibilistic logic

    Get PDF
    International audienceThe paper presents a ‘multiple agent’ logic where formulas are pairs of the form (a, A), made of a proposition a and a subset of agents A. The formula (a, A) is intended to mean ‘(at least) all agents in A believe that a is true’. The formal similarity of such formulas with those of possibilistic logic, where propositions are associated with certainty levels, is emphasised. However, the subsets of agents are organised in a Boolean lattice, while certainty levels belong to a totally ordered scale. The semantics of a set of ‘multiple agent’ logic formulas is expressed by a mapping which associates a subset of agents with each interpretation (intuitively, the maximal subset of agents for whom this interpretation is possibly true). Soundness and completeness results are established. Then a joint extension of the multiple agent logic and possibilistic logic is outlined. In this extended logic, propositions are then associated with both sets of agents and certainty levels. A formula then expresses that ‘all agents in set A believe that a is true at least at some level’. The semantics is then given in terms of fuzzy sets of agents that find an interpretation more or less possible. A specific feature of possibilistic logic is that the inconsistency of a knowledge base is a matter of degree. The proposed setting enables us to distinguish between the global consistency of a set of agents and their individual consistency (where both can be a matter of degree). In particular, given a set of multiple agent possibilistic formulas, one can compute the subset of agents that are individually consistent to some degree

    DWReCO at CheckThat! 2023: Enhancing Subjectivity Detection through Style-based Data Sampling

    Full text link
    This paper describes our submission for the subjectivity detection task at the CheckThat! Lab. To tackle class imbalances in the task, we have generated additional training materials with GPT-3 models using prompts of different styles from a subjectivity checklist based on journalistic perspective. We used the extended training set to fine-tune language-specific transformer models. Our experiments in English, German and Turkish demonstrate that different subjective styles are effective across all languages. In addition, we observe that the style-based oversampling is better than paraphrasing in Turkish and English. Lastly, the GPT-3 models sometimes produce lacklustre results when generating style-based texts in non-English languages.Comment: Accepted to CLEF CheckThat! La

    Decentralization and centralization of local public services in Tunisia

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 1992.Includes bibliographical references (leaves 268-271).by Assai Khellaf.Ph.D

    A Comparative Study of the Performance of Uncoated, PVD, CVD and MTCVD Coated Carbide Inserts in Dry Turning of AISI4140 Steel

    Get PDF
    An experimental study has been carried out to investigate and compare the cutting tool performances represented by insert wear, surface roughness and cutting forces of an uncoated carbide (H13A) and three coated carbides GC2015 ( TiCN / Al2O3 / TiN ), GC1015 (TiN) and GC4215 ( TiCN / Al2O3 ) during the dry turning of AISI4140 steel. Turning was carried out during 5 minutes on cylindrical specimens (80 mm diameter and 400 mm cutting length) along with a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and with a cutting speed of 350 m/min. The wear results show the effectiveness of both GC2015 and GC4215 cutting inserts where the flank wear rate of the monolayer insert (GC1015) reaches approximately 2 times that of the bilayer insert (GC4215) and 4-times that of the multilayer insert (GC2015), while insert H13A demonstrated the highest wear. Moreover, SEM analysis shows that abrasion, adhesion and chipping are the dominant wear mechanisms. The surface quality obtained with the coated GC2015 insert is found to be 1.38, 1.63 and 4.63 times better than those obtained with GC4215, GC1015 and H13A inserts respectively. Finally, the coated GC2015 (CVD) cutting insert is identified as the leading material in terms of cutting force as the results found show that the ratios are ( Ft-GC4215 / Ft-GC2015 ) = 1.05, ( Ft-GC1015 / Ft-GC2015 ) = 1.13 and ( Ft-H13A / Ft-GC2015 ) = 1.77
    • 

    corecore