94 research outputs found

    Developing research priorities for palliative care of people with intellectual disabilities in Europe: a consultation process using nominal group technique

    Get PDF
    BACKGROUND: Empirical knowledge around palliative care provision and needs of people with intellectual disabilities is extremely limited, as is the availability of research resources, including expertise and funding. This paper describes a consultation process that sought to develop an agenda for research priorities for palliative care of people with intellectual disabilities in Europe. METHODS: A two-day workshop was convened, attended by 16 academics and clinicians in the field of palliative care and intellectual disability from six European countries. The first day consisted of round-table presentations and discussions about the current state of the art, research challenges and knowledge gaps. The second day was focused on developing consensus research priorities with 12 of the workshop participants using nominal group technique, a structured method which involved generating a list of research priorities and ranking them in order of importance. RESULTS: A total of 40 research priorities were proposed and collapsed into eleven research themes. The four most important research themes were: investigating issues around end of life decision making; mapping the scale and scope of the issue; investigating the quality of palliative care for people with intellectual disabilities, including the challenges in achieving best practice; and developing outcome measures and instruments for palliative care of people with intellectual disabilities. CONCLUSIONS: The proposal of four major priority areas and a range of minor themes for future research in intellectual disability, death, dying and palliative care will help researchers to focus limited resources and research expertise on areas where it is most needed and support the building of collaborations. The next steps are to cross-validate these research priorities with people with intellectual disabilities, carers, clinicians, researchers and other stakeholders across Europe; to validate them with local and national policy makers to determine how they could best be incorporated in policy and programmes; and to translate them into actual research studies by setting up European collaborations for specific studies that require such collaboration, develop research proposals and attract research funding

    Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells

    Get PDF
    Cripto-1 (CR-1), a recently discovered protein of the epidermal growth factor (EGF) family, was found to interact with a high affinity, saturable binding site(s) on HC-11 mouse mammary epithelial cells and on several different human breast cancer cell lines. This receptor exhibits specificity for CR-1, since other EGF-related peptides including EGF, transforming growth factor alpha, heparin-binding EGF-like growth factor, amphiregulin, epiregulin, betacellulin, or heregulin beta1 that bind to either the EGF receptor or to other type 1 receptor tyrosine kinases such as erb B-3 or erb B-4 fail to compete for binding. Conversely, CR-1 was found not to directly bind to or to activate the tyrosine kinases associated with the EGFR, erb B-2, erb B-3, or erb B-4 either alone or in various pairwise combinations which have been ectopically expressed in Ba/F3 mouse pro-B lymphocyte cells. However, exogenous CR-1 could induce an increase in the tyrosine phosphorylation of 185- and 120-kDa proteins and a rapid (within 3-5 min) increase in the tyrosine phosphorylation of the SH2-containing adaptor proteins p66, p52, and p46 Shc in mouse mammary HC-11 epithelial cells and in human MDA-MB-453 and SKBr-3 breast cancer cells. CR-1 was also found to promote an increase in the association of the adaptor Grb2-guanine nucleotide exchange factor-mouse son of sevenless (mSOS) signaling complex with tyrosine-phosphorylated Shc in HC-11 cells. Finally, CR-1 was able to increase p42(erk-2) mitogen-activated protein kinase (MAPK) activity in HC-11 cells within 5-10 min of treatment. These data demonstrate that CR-1 can function through a receptor which activates intracellular components in the ras/raf/MEK/MAPK pathway

    Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?

    Full text link
    Creep due to ice flow is generally thought to be the main cause for the formation of crystallographic preferred orientations (CPOs) in polycrystalline anisotropic ice. However, linking the development of CPOs to the ice flow history requires a proper understanding of the ice aggregate's microstructural response to flow transitions. In this contribution the influence of ice deformation history on the CPO development is investigated by means of full-field numerical simulations at the microscale. We simulate the CPO evolution of polycrystalline ice under combinations of two consecutive deformation events up to high strain, using the code VPFFT (visco-plastic fast Fourier transform algorithm) within ELLE. A volume of ice is first deformed under coaxial boundary conditions, which results in a CPO. The sample is then subjected to different boundary conditions (coaxial or non-coaxial) in order to observe how the deformation regime switch impacts the CPO. The model results indicate that the second flow event tends to destroy the first, inherited fabric with a range of transitional fabrics. However, the transition is slow when crystallographic axes are critically oriented with respect to the second imposed regime. Therefore, interpretations of past deformation events from observed CPOs must be carried out with caution, particularly in areas with complex deformation histories

    Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?

    Get PDF
    Creep due to ice flow is generally thought to be the main cause for the formation of crystallographic preferred orientations (CPOs) in polycrystalline anisotropic ice. However, linking the development of CPOs to the ice flow history requires a proper understanding of the ice aggregate's microstructural response to flow transitions. In this contribution the influence of ice deformation history on the CPO development is investigated by means of full-field numerical simulations at the microscale. We simulate the CPO evolution of polycrystalline ice under combinations of two consecutive deformation events up to high strain, using the code VPFFT (visco-plastic fast Fourier transform algorithm) within ELLE. A volume of ice is first deformed under coaxial boundary conditions, which results in a CPO. The sample is then subjected to different boundary conditions (coaxial or non-coaxial) in order to observe how the deformation regime switch impacts the CPO. The model results indicate that the second flow event tends to destroy the first, inherited fabric with a range of transitional fabrics. However, the transition is slow when crystallographic axes are critically oriented with respect to the second imposed regime. Therefore, interpretations of past deformation events from observed CPOs must be carried out with caution, particularly in areas with complex deformation histories

    Academic Cancer Center Phase I Program Development

    Full text link
    Multiple factors critical to the effectiveness of academic phase I cancer programs were assessed among 16 academic centers in the U.S. Successful cancer centers were defined as having broad phase I and I/II clinical trial portfolios, multiple investigator‐initiated studies, and correlative science. The most significant elements were institutional philanthropic support, experienced clinical research managers, robust institutional basic research, institutional administrative efforts to reduce bureaucratic regulatory delays, phase I navigators to inform patients and physicians of new studies, and a large cancer center patient base. New programs may benefit from a separate stand‐alone operation, but mature phase I programs work well when many of the activities are transferred to disease‐oriented teams. The metrics may be useful as a rubric for new and established academic phase I programs.This commentary assesses the factors necessary for the effectiveness of academic phase I cancer programs. The metrics presented here may be useful as a rubric for new and established programs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139928/1/onco12106-sup-0001-suppinfo1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139928/2/onco12106.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139928/3/onco12106-sup-0002-suppinfo2.pd

    Regulation of Cathepsin G Reduces the Activation of Proinsulin-Reactive T Cells from Type 1 Diabetes Patients

    Get PDF
    Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4+ T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells

    Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    Get PDF
    BACKGROUND: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. METHODS AND FINDINGS: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. CONCLUSIONS: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
    corecore