5,824 research outputs found

    Social Agency and Temporal Binding in Mental Disorder

    Get PDF
    This work consists of two studies performing three different experiments. They make use of the temporal binding effect (TB), the judgment error in a time estimation task when performing voluntary actions. TB manifests as an underestimation of durations between two events and particularly occurs when judging the time between actions and their effects. As TB reliably occurs during self performed action, it can be used as a measurable correlate to the Sense of Agency (SoA). As SoA is often altered during states of mental disorder, TB tasks pose an implicit way to assess disturbances and alterations in its experience. Additionally, TB relies heavily on predictive processes allowing for deductions about potentially underlying cognitive mechanisms. The paradigm employed in the two studies merges existing theory on the influence of social cognitive processes on TB and adapts it to investigate their influence on Autism Spectrum Disorder (ASD) as a showcase for further mental health research. The aim of the paradigm was to disentangle the difference between bottom-up perception and top-down belief on TB. It does so by using a face stimulus and a confederate study design. The results identify a social hyperbinding. TB emerges for changes in faces, as well as for interactions with a human partner. The effect is larger when compared to interactions with non-face stimuli and actions performed without a partner. Social hyperbinding appeared whenever social information was present in the action-event sequence, irrespective of perception and belief. For participants with ASD social hyperbinding was smaller as compared to participants without ASD. These results indicate a differential processing of social information during action-event monitoring and might reflect stronger SoA during social interaction for individuals without ASD. The paradigm is discussed in terms of its limitations and its amendability to the investigation of other mental disorders, particular to Schizophrenia and Major Depressive Disorder (MDD)

    The Fueling Diagram: Linking Galaxy Molecular-to-Atomic Gas Ratios to Interactions and Accretion

    Get PDF
    To assess how external factors such as local interactions and fresh gas accretion influence the global ISM of galaxies, we analyze the relationship between recent enhancements of central star formation and total molecular-to-atomic (H2/HI) gas ratios, using a broad sample of field galaxies spanning early-to-late type morphologies, stellar masses of 10^(7.2-11.2) Msun, and diverse stages of evolution. We find that galaxies occupy several loci in a "fueling diagram" that plots H2/HI vs. mass-corrected blue-centeredness, a metric tracing the degree to which galaxies have bluer centers than the average galaxy at their stellar mass. Spiral galaxies show a positive correlation between H2/HI and mass-corrected blue-centeredness. When combined with previous results linking mass-corrected blue-centeredness to external perturbations, this correlation suggests a link between local galaxy interactions and molecular gas inflow/replenishment. Intriguingly, E/S0 galaxies show a more complex picture: some follow the same correlation, some are quenched, and a distinct population of blue-sequence E/S0 galaxies (with masses below key transitions in gas richness) defines a separate loop in the fueling diagram. This population appears to be composed of low-mass merger remnants currently in late- or post-starburst states, in which the burst first consumes the H2 while the galaxy center keeps getting bluer, then exhausts the H2, at which point the burst population reddens as it ages. Multiple lines of evidence suggest connected evolutionary sequences in the fueling diagram. In particular, tracking total gas-to-stellar mass ratios within the diagram provides evidence of fresh gas accretion onto low-mass E/S0s emerging from central starbursts. Drawing on a comprehensive literature search, we suggest that virtually all galaxies follow the same evolutionary patterns found in our broad sample.Comment: 24 pages, 11 figures (table 4 available at http://user.physics.unc.edu/~dstark/table4_csv.txt), accepted for publication in Ap

    Disturbed Experience of Time in Depression - Evidence from Content Analysis

    Get PDF
    Disturbances in the experience of time have been a commonly reported feature of depressive disorders since the beginning of modern psychiatry and psychological research. However, qualitative research approaches to investigate the phenomenon are rarely used. We employed content analysis to investigate disturbances of time experience in Major Depressive Disorder. Our analysis from 25 participants showed that individuals with Major Depressive Disorder subjectively seem to have lost the ability to influence or change the present, resulting in an impersonal and blocked future. The present is rendered meaningless, the past unchangeably negative, and the passage of time turned into a dragging, inexorable, and viscous continuance. The overall,—possibly intersubjective—concept of time experience, remains largely intact, causing or adding to depressive mood and suffering. We elaborate on how these findings reflect previous theories on the experience of time in depression. This study might encourage future inquiries into both the phenomenal and neuroscientific foundation of time experience under psychopathological conditions

    Discovery of diverse and functional antibodies from large human repertoire antibody libraries

    Get PDF
    AbstractPhage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac

    Phase Change Material for Thermotherapy of Buruli Ulcer: A Prospective Observational Single Centre Proof-of-Principle Trial

    Get PDF
    Buruli ulcer is an infection of the subcutaneous tissue leading to chronic necrotizing skin ulcers. The causative pathogen, Mycobacterium ulcerans, grows best at 30°C–33°C and not above 37°C, and this property makes the application of heat a treatment option. We achieved a breakthrough in heat treatment of Buruli ulcer by employing the phase change material sodium acetate trihydrate as a heat application system for thermotherapy, which is widely used in commercial pocket heat pads. It is easy to apply, rechargeable in hot water, non-toxic and non-hazardous to the environment. Six laboratory reconfirmed patients with ulcerative Buruli lesions were included in the proof-of-principle study and treated for four to six weeks. In patients with small ulcers, wounds healed completely without further intervention. Patients with large defects had skin grafting after successful heat treatment. Heat treatment was not associated with marked increases in local inflammation or the development of ectopic lymphoid tissue. One and a half years after completion of treatment, all patients are relapse-free. The reusable phase change material–based heat application device appears perfectly suited for use in remote Buruli ulcer–endemic areas of countries with limited resources and infrastructure

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference

    Disease Detection by Ultrasensitive Quantification of Microdosed Synthetic Urinary Biomarkers

    Get PDF
    The delivery of exogenous agents can enable noninvasive disease monitoring, but existing low-dose approaches require complex infrastructure. In this paper, we describe a microdose-scale injectable formulation of nanoparticles that interrogate the activity of thrombin, a key regulator of clotting, and produce urinary reporters of disease state. We establish a customized single molecule detection assay that enables urinary discrimination of thromboembolic disease in mice using doses of the nanoparticulate diagnostic agents that fall under regulatory guidelines for “microdosing.”National Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award F32CA159496-02)Burroughs Wellcome Fund (Career Award at the Scientific Interface)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)David H. Koch Institute for Integrative Cancer Research at MIT (Frontier Research Program

    Search for Low Scale Gravity Effects in e+e- Collisions at LEP

    Get PDF
    Recent theories propose that quantum gravity effects may be observable at LEP energies via gravitons that couple to Standard Model particles and propagate into extra spatial dimensions. The associated production of a graviton and a photon is searched for as well as the effects of virtual graviton exchange in the processes: e+e- -> gamma gamma, ZZ, WW, mu mu, tau tau, qq and ee No evidence for this new interaction is found in the data sample collected by the L3 detector at LEP at centre-of-mass energies up to 183 GeV. Limits close to 1 TeV on the scale of this new scenario of quantum gravity are set

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore