8 research outputs found

    Data from: Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin internal genes in pigs in China

    No full text
    ‘Two-way' transmission of influenza viruses between humans and swine has been frequently observed and the occurrence of the 2009 H1N1 pandemic influenza (pdm/09) demonstrated that swine-origin viruses could facilitate the genesis of a pandemic strain. Although multiple introductions to and reassortment in swine of the pdm/09 virus have been repeatedly reported in both Eurasia and the Americas, its long-term impact on the development of swine influenza viruses (SIVs) has not been systematically explored. Our comprehensive evolutionary studies on the complete genomes of 387 SIVs obtained from 2009 to 2012 in influenza surveillance in China revealed 17 reassortant genotypes with pdm/09-origin genes. Even though the entire 2009 pandemic virus and its surface genes cannot persist, its internal genes have becoming established and are now the predominant lineages in pigs in the region. The main persistent pdm/09-origin reassortant forms had at least 5 pdm/09-origin internal genes and their surface genes primarily of European avian-like (EA) or human H3N2-like SIV origin. These findings represent a marked change to the evolutionary patterns and ecosystem of SIVs in China. It is possible that the pdm/09-origin internal genes may be in the process of replacing EA- or triple reassortant-like internal genes. These alterations to the SIV gene pool need to be continually monitored to assess changes in the potential for SIVs to transmit to humans. Importance: Shortly after the emergence of the 2009 pandemic H1N1 (pdm/09) influenza virus, it was transmitted from humans to pigs and this continues to occur around the world. Many reassortants between pdm/09-origin viruses and enzootic swine influenza viruses (SIVs) have been detected. However, the long-term impact of pdm/09-origin viruses on the SIV gene pool, which could lead to the generation of influenza viruses with the potential to infect humans, has not been systematically examined. From extensive surveillance of SIVs over a 38-month period in southern China, it was found that, although neither complete pdm/09 viruses nor their surface genes could persist in pigs, their internal genes did persist. Over the survey period, these internal genes became predominant, potentially replacing those of the enzootic SIV lineages. The altered diversity of the SIV gene pool needs to be closely monitored for changes in the potential of SIVs to transmit to humans

    SARS-CoV-2 hijacks neutralizing dimeric IgA for nasal infection and injury in Syrian hamsters1

    No full text
    ABSTRACTPrevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury

    Sickness: From the focus on cytokines, prostaglandins, and complement factors to the perspectives of neurons

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore