72 research outputs found

    Proline-rich tyrosine kinase 2 mediates gonadotropin-releasing hormone signaling to a specific extracellularly regulated kinase-sensitive transcriptional locus in the luteinizing hormone beta-subunit gene

    Get PDF
    G protein-coupled receptor regulation of gene transcription primarily occurs through the phosphorylation of transcription factors by MAPKs. This requires transduction of an activating signal via scaffold proteins that can ultimately determine the outcome by binding signaling kinases and adapter proteins with effects on the target transcription factor and locus of activation. By investigating these mechanisms, we have elucidated how pituitary gonadotrope cells decode an input GnRH signal into coherent transcriptional output from the LH β-subunit gene promoter. We show that GnRH activates c-Src and multiple members of the MAPK family, c-Jun NH(2)-terminal kinase 1/2, p38MAPK, and ERK1/2. Using dominant-negative point mutations and chemical inhibitors, we identified that calcium-dependent proline-rich tyrosine kinase 2 specifically acts as a scaffold for a focal adhesion/cytoskeleton-dependent complex comprised of c-Src, Grb2, and mSos that translocates an ERK-activating signal to the nucleus. The locus of action of ERK was specifically mapped to early growth response-1 (Egr-1) DNA binding sites within the LH β-subunit gene proximal promoter, which was also activated by p38MAPK, but not c-Jun NH(2)-terminal kinase 1/2. Egr-1 was confirmed as the transcription factor target of ERK and p38MAPK by blockade of protein expression, transcriptional activity, and DNA binding. We have identified a novel GnRH-activated proline-rich tyrosine kinase 2-dependent ERK-mediated signal transduction pathway that specifically regulates Egr-1 activation of the LH β-subunit proximal gene promoter, and thus provide insight into the molecular mechanisms required for differential regulation of gonadotropin gene expression

    Herramienta metaheurística de asistencia a la toma de decisiones de inversión en renovación de cables MT, con datos disponibles de la Smart Grid

    Full text link
    [ES] Para atenuar el impacto de las averías en red subterránea MT sobre la continuidad del suministro eléctrico, desde su planificación de renovación, operación y mantenimiento, se desarrolla una herramienta de apoyo a la toma de decisiones. La herramienta se aplica en cables MT de papel impregnado en aceite (PILC) a renovar y así planificar la adecuada priorización. Se proporciona como resultado un Índice de Priorización que se atribuye a cada tramo PILC a renovar en la Región Este de España de i-DE. Es un índice actualizado con el registro sistemático de incidencias y el avance en la ejecución de la renovación planificada. Centra la atención en cables cercanos al final de vida útil, permitiendo anticipar el fallo en base a su condición y estado.El desarrollo de esta herramienta ha sido posible gracias al apoyo, iniciativa y los datos de la Smart Grid de i-DE, en estrecha colaboración con el ITE, centro tecnológico líder de la red de excelencia Cervera HySGrid+ (EXP - 00122779 / CER-20191019) apoyada por MICINN a través de CDTI.Barricarte-Navas, B.; Allende Aranguiz, G.; Jiménez-Chillarón, L.; Rodríguez Gutiérrez, Ó.; Bonfil Marti, LC.; Gómez Arciniega, D.; Picard López, JL.... (2020). Herramienta metaheurística de asistencia a la toma de decisiones de inversión en renovación de cables MT, con datos disponibles de la Smart Grid. Grupo Tecma Red. 11-16. http://hdl.handle.net/10251/178602S111

    Role of splice variants in the metastatic progression of prostate cancer

    Get PDF
    AS (alternative splicing) and its role in disease, especially cancer, has come to forefront in research over the last few years. Alterations in the ratio of splice variants have been widely observed in cancer. Splice variants of cancer-associated genes have functions that can alter cellular phenotype, ultimately altering metastatic potential. As metastases are the cause of approximately 90% of all human cancer deaths, it is crucial to understand how AS is dysregulated in metastatic disease. We highlight some recent studies into the relationship between altered AS of key genes and the initiation of prostate cancer metastasis. ©The Authors Journal compilation ©2012 Biochemical Society

    Long-Term GPS Tracking of Ocean Sunfish Mola mola Offers a New Direction in Fish Monitoring

    Get PDF
    Satellite tracking of large pelagic fish provides insights on free-ranging behaviour, distributions and population structuring. Up to now, such fish have been tracked remotely using two principal methods: direct positioning of transmitters by Argos polar-orbiting satellites, and satellite relay of tag-derived light-level data for post hoc track reconstruction. Error fields associated with positions determined by these methods range from hundreds of metres to hundreds of kilometres. However, low spatial accuracy of tracks masks important details, such as foraging patterns. Here we use a fast-acquisition global positioning system (Fastloc GPS) tag with remote data retrieval to track long-term movements, in near real time and position accuracy of <70 m, of the world's largest bony fish, the ocean sunfish Mola mola. Search-like movements occurred over at least three distinct spatial scales. At fine scales, sunfish spent longer in highly localised areas with faster, straighter excursions between them. These ‘stopovers’ during long-distance movement appear consistent with finding and exploiting food patches. This demonstrates the feasibility of GPS tagging to provide tracks of unparalleled accuracy for monitoring movements of large pelagic fish, and with nearly four times as many locations obtained by the GPS tag than by a conventional Argos transmitter. The results signal the potential of GPS-tagged pelagic fish that surface regularly to be detectors of resource ‘hotspots’ in the blue ocean and provides a new capability for understanding large pelagic fish behaviour and habitat use that is relevant to ocean management and species conservation

    Accuracy of Using Visual Identification of White Sharks to Estimate Residency Patterns

    Get PDF
    Determining the residency of an aquatic species is important but challenging and it remains unclear what is the best sampling methodology. Photo-identification has been used extensively to estimate patterns of animals' residency and is arguably the most common approach, but it may not be the most effective approach in marine environments. To examine this, in 2005, we deployed acoustic transmitters on 22 white sharks (Carcharodon carcharias) in Mossel Bay, South Africa to quantify the probability of detecting these tagged sharks by photo-identification and different deployment strategies of acoustic telemetry equipment. Using the data collected by the different sampling approaches (detections from an acoustic listening station deployed under a chumming vessel versus those from visual sightings and photo-identification), we quantified the methodologies' probability of detection and determined if the sampling approaches, also including an acoustic telemetry array, produce comparable results for patterns of residency. Photo-identification had the lowest probability of detection and underestimated residency. The underestimation is driven by various factors primarily that acoustic telemetry monitors a large area and this reduces the occurrence of false negatives. Therefore, we propose that researchers need to use acoustic telemetry and also continue to develop new sampling approaches as photo-identification techniques are inadequate to determine residency. Using the methods presented in this paper will allow researchers to further refine sampling approaches that enable them to collect more accurate data that will result in better research and more informed management efforts and policy decisions

    Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    Get PDF
    Background. Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99 % of the world’s 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70 % of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year 21, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhea

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Residency patterns and migration dynamics of adult bull sharks (Carcharhinus leucas) on the east coast of southern Africa:

    Get PDF
    Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean  = 533 km) with eight of these sharks returning to the study site
    corecore