682 research outputs found
Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios
We present electron transport measurements on lithographically defined and
etched graphene nanoconstrictions with different aspect ratios including
different lengths (L) and widths (W). A roughly length-independent disorder
induced effective energy gap can be observed around the charge neutrality
point. This energy gap scales inversely with the width even in regimes where
the length of the constriction is smaller than its width (L<W). In very short
constrictions, we observe both resonances due to localized states or charged
islands and an elevated overall conductance level (0.1-1e2/h), which is
strongly length-dependent in the gap region. This makes very short graphene
constrictions interesting for highly transparent graphene tunneling barriers.Comment: 4 pages, 4 figure
Transport in coupled graphene-nanotube quantum devices
We report on the fabrication and characterization of all-carbon hybrid
quantum devices based on graphene and single-walled carbon nanotubes. We
discuss both, carbon nanotube quantum dot devices with graphene charge
detectors and nanotube quantum dots with graphene leads. The devices are
fabricated by chemical vapor deposition growth of carbon nanotubes and
subsequent structuring of mechanically exfoliated graphene. We study the
detection of individual charging events in the carbon nanotube quantum dot by a
nearby graphene nanoribbon and show that they lead to changes of up to 20% of
the conductance maxima in the graphene nanoribbon acting as a good performing
charge detector. Moreover, we discuss an electrically coupled graphene-nanotube
junction, which exhibits a tunneling barrier with tunneling rates in the low
GHz regime. This allows to observe Coulomb blockade on a carbon nanotube
quantum dot with graphene source and drain leads
Whole exome sequencing to identify genetic causes of short stature
BACKGROUND/AIMS: Short stature is a common reason for presentation to pediatric endocrinology clinics. However, for most patients, no cause for the short stature can be identified. As genetics plays a strong role in height, we sought to identify known and novel genetic causes of short stature.
METHODS: We recruited 14 children with severe short stature of unknown etiology. We conducted whole exome sequencing of the patients and their family members. We used an analysis pipeline to identify rare non-synonymous genetic variants that cause the short stature.
RESULTS: We identified a genetic cause of short stature in 5 of the 14 patients. This included cases of floating-harbor syndrome, Kenny-Caffey syndrome, the progeroid form of Ehlers-Danlos syndrome, as well as 2 cases of the 3-M syndrome. For the remaining patients, we have generated lists of candidate variants.
CONCLUSIONS: Whole exome sequencing can help identify genetic causes of short stature in the context of defined genetic syndromes, but may be less effective in identifying novel genetic causes of short stature in individual families. Utilized in the clinic, whole exome sequencing can provide clinically relevant diagnoses for these patients. Rare syndromic causes of short stature may be underrecognized and underdiagnosed in pediatric endocrinology clinics
Yield-biodiversity trade-off in patchy fields of Miscanthus × giganteus
Increasing crop productivity to meet rising demands for food and energy, but doing so in an environmentally sustainable manner, is one of the greatest challenges for agriculture to date. In Ireland, Miscanthus 9 giganteus has the potential to become a major feedstock for bioenergy production, but the economic feasibility of its cultivation depends on high yields. Miscanthus fields can have a large number of gaps in crop cover, adversely impacting yield and hence economic viability. Predominantly positive effects of Miscanthus on biodiversity reported from previous research might be attributable to high crop patchiness, particularly during the establishment phase. The aim of this research was to assess crop patchiness on a field scale and to analyse the relationship between Miscanthus yield and species richness and abundance of selected taxa of farmland wildlife. For 14 Miscanthus fields at the end of their establishment phase (4–5 years after planting), which had been planted either on improved grassland (MG) or tilled arable land (MT), we determined patchiness of the crop cover, percentage light penetration (LP) to the lower canopy, Miscanthus shoot density and height, vascular plants and epigeic arthropods. Plant species richness and noncrop vegetation cover in Miscanthus fields increased with increasing patchiness, due to higher levels of LP to the lower canopy. The species richness of ground beetles and the activity density of spiders followed the increase in vegetation cover. Plant species richness and activity density of spiders on both MT and MG fields, as well as vegetation cover and activity density of ground beetles on MG fields, were negatively associated with Miscanthus yield. In conclusion, positive effects of Miscanthus on biodiversity can diminish with increasing productivity. This matter needs to be considered when assessing the relative ecological impacts of developing biomass crops in comparison with other land use. Keywords: Araneae, Carabidae, crop cover, light penetration, Miscanthus establishment, patchiness, vascular plants, vegetation coverYield-biodiversity trade-off in patchy fields of Miscanthus × giganteuspublishedVersio
Ebola virus VP35 induces high-level production of recombinant TPL-2–ABIN-2–NF-κB1 p105 complex in co-transfected HEK-293 cells
Activation of PKR (double-stranded-RNA-dependent protein kinase) by DNA plasmids decreases translation, and limits the amount of recombinant protein produced by transiently transfected HEK (human embryonic kidney)-293 cells. Co-expression with Ebola virus VP35 (virus protein 35), which blocked plasmid activation of PKR, substantially increased production of recombinant TPL-2 (tumour progression locus 2)–ABIN-2 [A20-binding inhibitor of NF-κB (nuclear factor κB) 2]–NF-κB1 p105 complex. VP35 also increased expression of other co-transfected proteins, suggesting that VP35 could be employed generally to boost recombinant protein production by HEK-293 cells
Ice-rich (periglacial) vs icy (glacial) depressions in the Argyre region, Mars: a proposed cold-climate dichotomy of landforms
On Mars, so-called “scalloped depressions” are widely observed in Utopia Planitia (UP) and Malea Planum (MP). Typically, they are rimless, metres- to decametres-deep, incised sharply, tiered inwardly, polygonised and sometimes pitted. The depressions seemingly incise terrain that is icy and possibly thermokarstic, i.e. produced by the thermal destabilisation of the icy terrain. Agewise, the depressions are thought to be relatively youthful, originating in the Late Amazonian Epoch.Here, we report the presence of similar depressions in the Argyre region (AR) (30–60° S; 290–355° E). More importantly, we separate and differentiate these landforms into two groups: (ice-rich) periglacial depressions (Type-1); and, (icy) glacial depressions (Type-2a-c). This differentiation is presented to the Mars community for the first time.Based on a suite of morphological and geological characteristics synonymous with ice-complexes in the Lena Peninsula (eastern Russia) and the Tuktoyaktuk Coastlands (Northwest Territories, Canada), we propose that the Type-1 depressions are ice-rich periglacial basins that have undergone volatile depletion largely by sublimation and as the result of thermal destabilisation. In keeping with the terms and associated definitions derived of terrestrial periglacial-geomorphology, ice-rich refers to permanently frozen-ground in which ice lenses or segregation ice (collectively referenced as excess ice) have formed.We suggest that the depressions are the product of a multi-step, cold-climate geochronology:(1) Atmospheric precipitation and surface accumulation of an icy mantle during recent high obliquities.(2) Regional or local triple-point conditions and thaw/evaporation of the mantle, either by exogenic forcing, i.e. obliquity-driven rises of aerial and sub-aerial temperatures, or endogenic forcing, i.e. along Argyre impact-related basement structures.(3) Meltwater migration into the regolith, at least to the full depth of the depressions.(4) Freeze-thaw cycling and the formation of excess ice.(5) Sublimation of the excess ice and depression formation as high obliquity dissipates and near-surface ice becomes unstable.The Type-2 depressions exhibit characteristics suggestive of (supra-glacial) dead-ice basins and snow/ice suncups observed in high-alpine landscapes on Earth, e.g. the Swiss Alps and the Himalayas. Like the Type-1 depressions, the Type-2 depressions could be the work of sublimation; however, the latter differ from the former in that they seem to develop within a glacial-like icy mantle that blankets the surface rather than within an ice-rich and periglacially-revised regolith at/near the surface.Interestingly, the Type-2 depressions overlie the Type-1 depressions at some locations. If the periglacial/glacial morphological and stratigraphical dichotomy of depressions is valid, then this points to recent glaciation at some locations within the AR being precursed by at least one episode of periglaciation. This also suggests that periglaciation has a deeper history in the region than has been thought hitherto. Moreover, if the hypothesised differences amongst the Argyre-based depressions are mirrored in Utopia Planitia and Malea Planum, then perhaps this periglacial-glacial dichotomy and its associated geochronology are as relevant to understanding late period landscape-evolution in these two regions as it is in the AR
A scalable framework for stylometric analysis of multi-author documents
This is an accepted manuscript of a chapter published by Springer in Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science, vol 10827 on 13/05/2018, available online: https://doi.org/10.1007/978-3-319-91452-7_52
The accepted version of the publication may differ from the final published version.Stylometry is a statistical technique used to analyze the variations in the author’s writing styles and is typically applied to authorship attribution problems. In this investigation, we apply stylometry to authorship identification of multi-author documents (AIMD) task. We propose an AIMD technique called Co-Authorship Graph (CAG) which can be used to collaboratively attribute different portions of documents to different authors belonging to the same community. Based on CAG, we propose a novel AIMD solution which (i) significantly outperforms the existing state-of-the-art solution; (ii) can effectively handle a larger number of co-authors; and (iii) is capable of handling the case when some of the listed co-authors have not contributed to the document as a writer. We conducted an extensive experimental study to compare the proposed solution and the best existing AIMD method using real and synthetic datasets. We show that the proposed solution significantly outperforms existing state-of-the-art method
2017 ACC/AHA/HFSA/ISHLT/ACP Advanced Training Statement on Advanced Heart Failure and Transplant Cardiology (Revision of the ACCF/AHA/ACP/HFSA/ISHLT 2010 Clinical Competence Statement on Management of Patients With Advanced Heart Failure and Cardiac Transplant)
Since the 1995 publication of its Core Cardiovascular Training Statement (COCATS),1 the American College of Cardiology (ACC) has played a central role in defining the knowledge, experiences, skills, and behaviors expected of all clinical cardiologists upon completion of training. Subsequent updates have incorporated major advances and revisions—both in content and structure—including, most recently,
De novo Vessel Formation Through Cross-Talk of Blood-Derived Cells and Mesenchymal Stromal Cells in the Absence of Pre-existing Vascular Structures
Background: The generation of functional blood vessels remains a key challenge for regenerative medicine. Optimized in vitro culture set-ups mimicking the in vivo perivascular niche environment during tissue repair may provide information about the biological function and contribution of progenitor cells to postnatal vasculogenesis, thereby enhancing their therapeutic potential. Aim: We established a fibrin-based xeno-free human 3D in vitro vascular niche model to study the interaction of mesenchymal stromal cells (MSC) with peripheral blood mononuclear cells (PBMC) including circulating progenitor cells in the absence of endothelial cells (EC), and to investigate the contribution of this cross-talk to neo-vessel formation. Materials and Methods: Bone marrow-derived MSC were co-cultured with whole PBMC, enriched monocytes (Mo), enriched T cells, and Mo together with T cells, respectively, obtained from leukocyte reduction chambers generated during the process of single-donor platelet apheresis. Cells were embedded in 3D fibrin matrices, using exclusively human-derived culture components without external growth factors. Cytokine secretion was analyzed in supernatants of 3D cultures by cytokine array, vascular endothelial growth factor (VEGF) secretion was quantified by ELISA. Cellular and structural re-arrangements were characterized by immunofluorescence and confocal laser-scanning microscopy of topographically intact 3D fibrin gels. Results: 3D co-cultures of MSC with PBMC, and enriched Mo together with enriched T cells, respectively, generated, within 2 weeks, complex CD31C /CD34C vascular structures, surrounded by basement membrane collagen type-IVC cells and matrix, in association with increased VEGF secretion. PBMC contained CD31C CD34CCD45dimCD14 progenitor-type cells, and EC of neo-vessels were PBMC-derived. Vascular structures showed intraluminal CD45C cells that underwent apoptosis thereby creating a lumen. Cross-talk of MSC with enriched Mo provided a proangiogenic paracrine environment. MSC co-cultured with enriched T cells formed "cellin-cell" structures generated through internalization of T cells by CD31C CD45dim = cells. No vascular structures were detected in co-cultures of MSC with either Mo or T cells. Conclusion: Our xeno-free 3D in vitro vascular niche model demonstrates that a complex synergistic network of cellular, extracellular and paracrine cross-talk can contribute to de novo vascular development through self-organization via co-operation of immune cells with blood-derived progenitor cells and MSC, and thereby may open a new perspective for advanced vascular tissue engineering in regenerative medicine
Corneal Replication Is an Interferon Response-Independent Bottleneck for Virulence of Herpes Simplex Virus 1 in the Absence of Virion Host Shutoff
Herpes simplex viruses lacking the virion host shutoff function (Δvhs) are avirulent and hypersensitive to type I and type II interferon (IFN). In this study, we demonstrate that even in the absence of IFN responses in AG129 (IFN-αβγR−/−) mice, Δvhs remains highly attenuated via corneal infection but is fully virulent via intracranial infection. The data demonstrate that the interferon-independent inherent replication defect of Δvhs has a significant impact upon peripheral replication and neuroinvasion
- …