752 research outputs found

    Which rhizobia nodulate which legumes in New Zealand soils?

    Get PDF
    Recent work which genotypically characterised rhizobia of native, crop and weed legumes in New Zealand and examined their cross-nodulation ability is reviewed and related to earlier work with focus on New Zealand pasture systems. The New Zealand native legumes were exclusively effectively nodulated by novel strains of Mesorhizobium which did not nodulate crop or weed legumes. Clovers, lucerne, Lotus and grain legumes were effectively nodulated by different genera, species and biovars of rhizobia primarily originating from inoculum. Rhizobial symbionts of white clover have established over wide areas in New Zealand. Weed legumes are effectively nodulated by different genera/species of rhizobia depending on species. Bradyrhizobia that cross-nodulate lupins, gorse, European broom and tagasaste are widespread in New Zealand

    Characterization of Membrane Potential Dependency of Mitochondrial Ca2+ Uptake by an Improved Biophysical Model of Mitochondrial Ca2+ Uniporter

    Get PDF
    Mitochondrial Ca2+ uniporter is the primary influx pathway for Ca2+ into respiring mitochondria, and hence plays a key role in mitochondrial Ca2+ homeostasis. Though the mechanism of extra-matrix Ca2+ dependency of mitochondrial Ca2+ uptake has been well characterized both experimentally and mathematically, the mechanism of membrane potential (ΔΨ) dependency of mitochondrial Ca2+ uptake has not been completely characterized. In this paper, we perform a quantitative reevaluation of a previous biophysical model of mitochondrial Ca2+ uniporter that characterized the possible mechanism of ΔΨ dependency of mitochondrial Ca2+ uptake. Based on a model simulation analysis, we show that model predictions with a variant assumption (Case 2: external and internal Ca2+ binding constants for the uniporter are distinct), that provides the best possible description of the ΔΨ dependency, are highly sensitive to variation in matrix [Ca2+], indicating limitations in the variant assumption (Case 2) in providing physiologically plausible description of the observed ΔΨ dependency. This sensitivity is attributed to negative estimate of a biophysical parameter that characterizes binding of internal Ca2+ to the uniporter. Reparameterization of the model with additional nonnengativity constraints on the biophysical parameters showed that the two variant assumptions (Case 1 and Case 2) are indistinguishable, indicating that the external and internal Ca2+ binding constants for the uniporter may be equal (Case 1). The model predictions in this case are insensitive to variation in matrix [Ca2+] but do not match the ΔΨ dependent data in the domain ΔΨ≤120 mV. To effectively characterize this ΔΨ dependency, we reformulate the ΔΨ dependencies of the rate constants of Ca2+ translocation via the uniporter by exclusively redefining the biophysical parameters associated with the free-energy barrier of Ca2+ translocation based on a generalized, non-linear Goldman-Hodgkin-Katz formulation. This alternate uniporter model has all the characteristics of the previous uniporter model and is also able to characterize the possible mechanisms of both the extra-matrix Ca2+ and ΔΨ dependencies of mitochondrial Ca2+ uptake. In addition, the model is insensitive to variation in matrix [Ca2+], predicting relatively stable physiological operation. The model is critical in developing mechanistic, integrated models of mitochondrial bioenergetics and Ca2+ handling

    Involvement of the Glycogen Synthase Kinase-3 Signaling Pathway in TBI Pathology and Neurocognitive Outcome

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE: Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI

    Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body

    Get PDF
    In humans and many other animals, memory consolidation occurs through multiple temporal phases and usually involves more than one neuroanatomical brain system. Genetic dissection of Pavlovian olfactory learning in Drosophila melanogaster has revealed multiple memory phases, but the predominant view holds that all memory phases occur in mushroom body neurons. Here, we demonstrate an acute requirement for NMDA receptors (NMDARs) outside of the mushroom body during long-term memory (LTM) consolidation. Targeted dsRNA-mediated silencing of Nmdar1 and Nmdar2 (also known as dNR1 or dNR2, respectively) in cholinergic R4m-subtype large-field neurons of the ellipsoid body specifically disrupted LTM consolidation, but not retrieval. Similar silencing of functional NMDARs in the mushroom body disrupted an earlier memory phase, leaving LTM intact. Our results clearly establish an anatomical site outside of the mushroom body involved with LTM consolidation, thus revealing both a distributed brain system subserving olfactory memory formation and the existence of a system-level memory consolidation in Drosophila

    Minimal residual disease in Myeloma: Application for clinical care and new drug registration

    Get PDF
    The development of novel agents has transformed the treatment paradigm for multiple myeloma, with minimal residual disease (MRD) negativity now achievable across the entire disease spectrum. Bone marrow–based technologies to assess MRD, including approaches using next-generation flow and next-generation sequencing, have provided real-time clinical tools for the sensitive detection and monitoring of MRD in patients with multiple myeloma. Complementary liquid biopsy–based assays are now quickly progressing with some, such as mass spectrometry methods, being very close to clinical use, while others utilizing nucleic acid–based technologies are still developing and will prove important to further our understanding of the biology of MRD. On the regulatory front, multiple retrospective individual patient and clinical trial level meta-analyses have already shown and will continue to assess the potential of MRD as a surrogate for patient outcome. Given all this progress, it is not surprising that a number of clinicians are now considering using MRD to inform real-world clinical care of patients across the spectrum from smoldering myeloma to relapsed refractory multiple myeloma, with each disease setting presenting key challenges and questions that will need to be addressed through clinical trials. The pace of advances in targeted and immune therapies in multiple myeloma is unprecedented, and novel MRD-driven biomarker strategies are essential to accelerate innovative clinical trials leading to regulatory approval of novel treatments and continued improvement in patient outcomes

    Azimuthal di-hadron correlations in d+Au and Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV from STAR

    Get PDF
    Yields, correlation shapes, and mean transverse momenta \pt{} of charged particles associated with intermediate to high-\pt{} trigger particles (2.5 < \pt < 10 \GeVc) in d+Au and Au+Au collisions at \snn=200 GeV are presented. For associated particles at higher \pt \gtrsim 2.5 \GeVc, narrow correlation peaks are seen in d+Au and Au+Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle \pt < 2 \GeVc, a large enhancement of the near- (\dphi \sim 0) and away-side (\dphi \sim \pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au+Au collisions compared to d+Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at \dphi \sim \pi in central Au+Au collisions.Comment: 16 pages, 11 figures, updated after journal revie

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore