359 research outputs found
Anabolic resistance does not explain sarcopenia in patients with type 2 diabetes mellitus, compared with healthy controls, despite reduced mTOR pathway activity
BackgroundAgeing and type 2 diabetes mellitus (T2DM) are risk factors for skeletal muscle loss. We investigated whether anabolic resistance to feeding might underlie accelerated muscle loss in older people with T2DM and whether dysregulated mTOR signalling was implicated.Subjects8 obese men with T2DM, and 12 age-matched controls were studied (age 68±3 vs. 68±6y; BMI: 30±2 vs. 27±5 kg·m-2).MethodsBody composition was measured by dual-X-ray absorptiometry. Insulin and glucose were clamped at post-absorptive concentrations (13±2 vs. 9±3 mU·l-1; 7.4±1.9 vs. 4.6±0.4 mmol·l-1; T2DM vs. controls). Fractional synthetic rates (FSR) of myofibrillar and sarcoplasmic proteins were measured as the rate of incorporation of [13C] leucine during a primed, constant infusion of [1-13C] α-ketoisocaproic acid, 3 h after 10 or 20g of essential amino acids (EAA) were orally administered. Protein expression of total and phosphorylated mTOR signalling proteins was determined by Western blot analysis.ResultsDespite a significantly lower appendicular lean mass index and a greater fat mass index in T2DM vs. controls, basal myofibrillar and sarcoplasmic and post-prandial myofibrillar FSR were similar. After 20g EAA, stimulation of sarcoplasmic FSR was slightly blunted in T2DM patients. Furthermore, feeding 20g EAA increased phosphorylation of mTOR, p70S6k and 4E-BP1 by 60-100% in controls with no response observed in T2DM.ConclusionsThere was clear dissociation between changes in mTOR signalling versus changes in protein synthesis rates. However, the intact anabolic response of myofibrillar FSR to feeding in both groups suggests anabolic resistance may not explain accelerated muscle loss in T2DM
Circulating pancreatic polypeptide concentrations predict visceral and liver fat content
CONTEXT AND OBJECTIVE: No current biomarker can reliably predict visceral and liver fat content, both of which are risk factors for cardiovascular disease. Vagal tone has been suggested to influence regional fat deposition. Pancreatic polypeptide (PP) is secreted from the endocrine pancreas under vagal control. We investigated the utility of PP in predicting visceral and liver fat.
PATIENTS AND METHODS: Fasting plasma PP concentrations were measured in 104 overweight and obese subjects (46 men and 58 women). In the same subjects, total and regional adipose tissue, including total visceral adipose tissue (VAT) and total subcutaneous adipose tissue (TSAT), were measured using whole-body magnetic resonance imaging. Intrahepatocellular lipid content (IHCL) was quantified by proton magnetic resonance spectroscopy.
RESULTS: Fasting plasma PP concentrations positively and significantly correlated with both VAT (r = 0.57, P < .001) and IHCL (r = 0.51, P < .001), but not with TSAT (r = 0.02, P = .88). Fasting PP concentrations independently predicted VAT after controlling for age and sex. Fasting PP concentrations independently predicted IHCL after controlling for age, sex, body mass index (BMI), waist-to-hip ratio, homeostatic model assessment 2-insulin resistance, (HOMA2-IR) and serum concentrations of triglyceride (TG), total cholesterol (TC), and alanine aminotransferase (ALT). Fasting PP concentrations were associated with serum ALT, TG, TC, low- and high-density lipoprotein cholesterol, and blood pressure (P < .05). These associations were mediated by IHCL and/or VAT. Fasting PP and HOMA2-IR were independently significantly associated with hepatic steatosis (P < .01).
CONCLUSIONS: Pancreatic polypeptide is a novel predictor of visceral and liver fat content, and thus a potential biomarker for cardiovascular risk stratification and targeted treatment of patients with ectopic fat deposition
Correction: Addison's disease presenting with idiopathic intracranial hypertension in 24-year-old woman: a case report
Mendelian Randomisation reveals SGLT1 Inhibition’s Potential in Reducing NAFLD Risk
NAFLD has no approved pharmacological treatments. SGLT-1 is a glucose transporter which mediates small intestinal glucose absorption. We evaluated the impact of genetically proxied SGLT-1 inhibition (SGLT-1i) on serum liver transaminases and NAFLD risk. We used a missense variant, rs17683430, in the SLC5A1 gene (encoding SGLT1) associated with HbA1c in a genome-wide association study (n=344182) to proxy SGLT-1i. Outcome genetic data comprised 1,483 NAFLD cases and 17,781 controls. Genetically proxied SGLT-1i was associated with reduced NAFLD risk (OR 0.36; 95%CI 0.15, 0.87; p=0.023) per 1 mmol/mol HbA1c reduction, and with reductions in liver enzymes (ALT, AST, GGT). Genetically proxied HbA1c, not specifically via SGLT-1i, was not associated with NAFLD risk. Colocalisation did not demonstrate genetic confounding. Overall, genetically proxied SGLT-1i is associated with improved liver health, this may be underpinned by SGLT-1 specific mechanisms. Clinical trials should evaluate the impact of SGLT-1/2 inhibitors on the prevention and treatment of NAFLD.<br/
Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women
Background & aims: Impaired anabolic responses to nutrition and exercise contribute to loss of skeletal muscle mass with ageing (sarcopenia). Here, we tested responses of muscle protein synthesis (MPS), in the under represented group of older women, to leucine-enriched essential amino acids (EAA) in comparison to a large bolus of whey protein (WP).
Methods: Twenty-four older women (65 ± 1 y) received (N ¼ 8/group) 1.5 g leucine-enriched EAA supplements (LEAA_1.5), 6 g LEAA (LEAA_6) in comparison to 40 g WP. A primed constant I.V infusion of 13C6-phenylalanine was used to determine MPS at baseline and in response to feeding (FED) and feeding-plus-exercise (FED-EX; 6 x 8 unilateral leg extensions; 75%1-RM). We quantified plasma insulin/AA concentrations, leg femoral blood flow (LBF)/muscle microvascular blood flow (MBF), and anabolic signalling via immunoblotting.
Results: Plasma insulineamia and EAAemia were greater and more prolonged with WP than LEAA, although LEAA_6 peaked at similar levels to WP. Neither LEAA or WP modified LBF or MBF. FED increased MPS similarly in the LEAA_1.5, LEAA_6 and WP (P < 0.05) groups over 0e2 h, with MPS significantly higher than basal in the LEAA_6 and WP groups only over 0e4 h. However, FED-EX increased MPS similarly across all the groups from 0 to 4 h (P < 0.05). Only p-p70S6K1 increased with WP at 2 h in FED (P < 0.05), and at 2/4 h in FED-EX (P < 0.05).
Conclusions: In conclusion, LEAA_1.5, despite only providing 0.6 g of leucine, robustly (perhaps maximally) stimulated MPS, with negligible trophic advantage of greater doses of LEAA or even to 40 g WP. Highlighting that composition of EAA, in particular the presence of leucine rather than amount is most crucial for anabolism
Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease.
Non-alcoholic fatty liver disease (NAFLD) is associated with multi-organ (hepatic, skeletal muscle, adipose tissue) insulin resistance (IR). Exercise is an effective treatment for lowering liver fat but its effect on IR in NAFLD is unknown. We aimed to determine whether supervised exercise in NAFLD would reduce liver fat and improve hepatic and peripheral (skeletal muscle and adipose tissue) insulin sensitivity. Sixty nine NAFLD patients were randomized to 16 weeks exercise supervision (n=38) or counselling (n=31) without dietary modification. All participants underwent MRI/spectroscopy to assess changes in body fat and in liver and skeletal muscle triglyceride, before and following exercise/counselling. To quantify changes in hepatic and peripheral insulin sensitivity, a pre-determined subset (n=12 per group) underwent a two-stage hyperinsulinaemic euglycaemic clamp pre- and post-intervention. Results are shown as mean [95% confidence interval (CI)]. Fifty participants (30 exercise, 20 counselling), 51 years (IQR 40, 56), body mass index (BMI) 31 kg/m(2) (IQR 29, 35) with baseline liver fat/water % of 18.8% (IQR 10.7, 34.6) completed the study (12/12 exercise and 7/12 counselling completed the clamp studies). Supervised exercise mediated a greater reduction in liver fat/water percentage than counselling [Δ mean change 4.7% (0.01, 9.4); P<0.05], which correlated with the change in cardiorespiratory fitness (r=-0.34, P=0.0173). With exercise, peripheral insulin sensitivity significantly increased (following high-dose insulin) despite no significant change in hepatic glucose production (HGP; following low-dose insulin); no changes were observed in the control group. Although supervised exercise effectively reduced liver fat, improving peripheral IR in NAFLD, the reduction in liver fat was insufficient to improve hepatic IR
Ectopic lipid storage in non-alcoholic fatty liver disease is not mediated by impaired mitochondrial oxidative capacity in skeletal muscle
Background and Aims. Simple clinical algorithms including the Fatty Liver Index (FLI) and Lipid Accumulation Product (LAP) have been developed as a surrogate marker for Non-Alcoholic Fatty Liver Disease (NAFLD). These algorithms have been constructed using ultrasonography, a semi-quantitative method. This study aimed to validate FLI and LAP as measures of hepatic steatosis, as measured quantitatively by proton magnetic resonance spectroscopy (1H-MRS).
Methods. Data were collected from 168 patients with NAFLD and 168 controls who had undergone clinical, biochemical and anthropometric assessment in the course of research studies. Values of FLI and LAP were determined, and assessed both as predictors of the presence of hepatic steatosis (liver fat >5.5 %) and of actual liver fat content, as measured by 1H MRS. The discriminative ability of FLI and LAP was estimated using the area under the Receiver Operator Characteristic curve (AUROC). Since FLI can also be interpreted as a predictive probability of hepatic steatosis, we assessed how well calibrated it was in our cohort. Linear regression with prediction intervals was used to assess the ability of FLI and LAP to predict liver fat content.
Results. FLI and LAP discriminated between patients with and without hepatic steatosis with an AUROC of 0.79 (IQR= 0.74, 0.84) and 0.78 (IQR= 0.72, 0.83), although quantitative prediction of liver fat content was unsuccessful. Additionally, the algorithms accurately matched the observed percentages of patients with hepatic steatosis in our cohort.
Conclusions. FLI and LAP may be used clinically, and for metabolic and epidemiological research, to identify patients with hepatic steatosis, but not as surrogates for liver fat content
The Impact of Macronutrient Intake on Non-alcoholic Fatty Liver Disease (NAFLD): Too Much Fat, Too Much Carbohydrate, or Just Too Many Calories?
Non-alcoholic fatty liver disease (NAFLD) is a growing epidemic, in parallel with the obesity crisis, rapidly becoming one of the commonest causes of chronic liver disease worldwide. Diet and physical activity are important determinants of liver fat accumulation related to insulin resistance, dysfunctional adipose tissue, and secondary impaired lipid storage and/or increased lipolysis. While it is evident that a hypercaloric diet (an overconsumption of calories) promotes liver fat accumulation, it is also clear that the macronutrient composition can modulate this risk. A number of other baseline factors modify the overfeeding response, which may be genetic or environmental. Although it is difficult to disentangle the effects of excess calories vs. specifically the individual effects of excessive carbohydrates and/or fats, isocaloric, and hypercaloric dietary intervention studies have been implemented to provide insight into the effects of different macronutrients, sub-types and their relative balance, on the regulation of liver fat. What has emerged is that different types of fat and carbohydrates differentially influence liver fat accumulation, even when diets are isocaloric. Furthermore, distinct molecular and metabolic pathways mediate the effects of carbohydrates and fat intake on hepatic steatosis. Fat accumulation appears to act through impairments in lipid storage and/or increased lipolysis, whereas carbohydrate consumption has been shown to promote liver fat accumulation through de novo lipogenesis. Effects differ dependent upon carbohydrate and fat type. Saturated fat and fructose induce the greatest increase in intrahepatic triglycerides (IHTG), insulin resistance, and harmful ceramides compared with unsaturated fats, which have been found to be protective. Decreased intake of saturated fats and avoidance of added sugars are therefore the two most important dietary interventions that can lead to a reduction in IHTG and potentially the associated risk of developing type 2 diabetes. A healthy and balanced diet and regular physical activity must remain the cornerstones of effective lifestyle intervention to prevent the development and progression of NAFLD. Considering the sub-type of each macronutrient, in addition to the quantity, are critical determinants of liver health
Exercise training reduces the acute physiological severity of post-menopausal hot flushes.
A hot-flush is characterised by feelings of intense heat, profuse elevations in cutaneous vasodilation and sweating, and reduced brain blood flow. Exercise training reduces self-reported hot-flush severity, but underpinning physiological data are lacking. We hypothesised that exercise training attenuates the changes in cutaneous vasodilation, sweat rate and cerebral blood flow during a hot flush. In a preference trial, 18 symptomatic post-menopausal women underwent a passive heat stress to induce hot-flushes at baseline and follow-up. Fourteen participants opted for a 16-week moderate intensity supervised exercise intervention, while 7 participants opted for control. Sweat rate, cutaneous vasodilation, blood pressure, heart rate and middle cerebral artery velocity (MCAv) were measured during the hot-flushes. Data were binned into eight equal segments, each representing 12.5% of hot flush duration. Weekly self-reported frequency and severity of hot flushes were also recorded at baseline and follow-up. Following training, mean hot-flush sweat rate decreased by 0.04 mg·cm2 ·min-1 at the chest (95% CI: 0.02-0.06, P = 0.01) and by 0.03 mg·cm2 ·min-1 (0.02-0.05, P = 0.03) at the forearm, compared with negligible changes in control. Training also mediated reductions in cutaneous vasodilation by 9% (6-12) at the chest and by 7% (4-9) at forearm (P≤0.05). Training attenuated hot flush MCAv by 3.4 cm/s (0.7-5.1, P = 0.04) compared with negligible changes in control. Exercise training reduced the self-reported severity of hot-flush by 109 arbitrary units (80-121, P<0.001). These data indicate that exercise training leads to parallel reductions in hot-flush severity and within-flush changes in cutaneous vasodilation, sweating and cerebral blood flo
Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men
Leucine modulates muscle protein synthesis (MPS), with potential to facilitate accrual/maintenance of muscle mass. Animal models suggest that leucine boluses shortly after meals may prolong MPS and delay onset of a “muscle-full” state. However, the effects of nutrient “top-ups” in humans, and particularly older adults where deficits exist, have not been explored. We determined the effects of a leucine top-up after essential amino acid (EAA) feeding on anabolic signaling, MPS, and muscle energy metabolism in older men. During 13C6-phenylalanine infusion, 16 men (∼70 years) consumed 15 g of EAA with (n=8, FED + LEU) or without (n=8, FED) 3 g of leucine top-up 90 min later. Repeated blood and muscle sampling permitted measurement of fasting and postprandial plasma EAA, insulin, anabolic signaling including mTOR complex 1 (mTORC1) substrates, cellular ATP and phosphorylocreatine, and MPS. Oral EAA achieved rapid insulinemia (12.5 iU·ml−1 25 min post-feed), essential aminoacidemia (3000 μM, 45–65 min post-feed), and activation of mTORC1 signaling. Leucine top-up prolonged plasma EAA (2800 μM, 135 min) and leucine availability (1050 μM, 135 min post-feed). Fasting FSRs of 0.046 and 0.056%·h-1 (FED and FED + LEU respectively) increased to 0.085 and 0.085%·h-1 90–180 min post-feed and returned to basal rates after 180 min in both groups. Phosphorylation of mTORC1 substrates returned to fasting levels 240 min post-feed in both groups. Feeding had limited effect on muscle elongation factor 2 (eEF2) phosphorylation. We demonstrate the refractoriness of muscle to nutrient-led anabolic stimulation in the postprandial period; thus, leucine supplements should be taken outside of meals, or with meals containing suboptimal protein in terms of either amount or EAA composition
- …
