416 research outputs found
Panoramic optical and near-infrared SETI instrument: prototype design and testing
The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial
Intelligence (PANOSETI) is an instrument program that aims to search for fast
transient signals (nano-second to seconds) of artificial or astrophysical
origin. The PANOSETI instrument objective is to sample the entire observable
sky during all observable time at optical and near-infrared wavelengths over
300 - 1650 nm. The PANOSETI instrument is designed with a number of modular
telescope units using Fresnel lenses (0.5m) arranged on two geodesic
domes in order to maximize sky coverage. We present the prototype design
and tests of these modular Fresnel telescope units. This consists of the design
of mechanical components such as the lens mounting and module frame. One of the
most important goals of the modules is to maintain the characteristics of the
Fresnel lens under a variety of operating conditions. We discuss how we account
for a range of operating temperatures, humidity, and module orientations in our
design in order to minimize undesirable changes to our focal length or angular
resolution.Comment: 12 pages, 8 figures, 1 tabl
Entangled Stories: The Red Jews in Premodern Yiddish and German Apocalyptic Lore
“Far, far away from our areas, somewhere beyond the Mountains of Darkness, on the other side of the Sambatyon River…there lives a nation known as the Red Jews.” The Red Jews are best known from classic Yiddish writing, most notably from Mendele's Kitser masoes Binyomin hashlishi (The Brief Travels of Benjamin the Third). This novel, first published in 1878, represents the initial appearance of the Red Jews in modern Yiddish literature. This comical travelogue describes the adventures of Benjamin, who sets off in search of the legendary Red Jews. But who are these Red Jews or, in Yiddish, di royte yidelekh? The term denotes the Ten Lost Tribes of Israel, the ten tribes that in biblical times had composed the Northern Kingdom of Israel until they were exiled by the Assyrians in the eighth century BCE. Over time, the myth of their return emerged, and they were said to live in an uncharted location beyond the mysterious Sambatyon River, where they would remain until the Messiah's arrival at the end of time, when they would rejoin the rest of the Jewish people.
This article is part of a broader study of the Red Jews in Jewish popular culture from the Middle Ages through modernity. It is partially based on a chapter from my book, Umstrittene Erlöser: Politik, Ideologie und jüdisch-christlicher Messianismus in Deutschland, 1500–1600 (Göttingen: Vandenhoeck & Ruprecht, 2011). Several postdoctoral fellowships have generously supported my research on the Red Jews: a Dr. Meyer-Struckmann-Fellowship of the German Academic Foundation, a Harry Starr Fellowship in Judaica/Alan M. Stroock Fellowship for Advanced Research in Judaica at Harvard University, a research fellowship from the Heinrich Hertz-Foundation, and a YIVO Dina Abramowicz Emerging Scholar Fellowship. I thank the organizers of and participants in the colloquia and conferences where I have presented this material in various forms as well as the editors and anonymous reviewers of AJS Review for their valuable comments and suggestions. I am especially grateful to Jeremy Dauber and Elisheva Carlebach of the Institute for Israel and Jewish Studies at Columbia University, where I was a Visiting Scholar in the fall of 2009, for their generous encouragement to write this article. Sue Oren considerably improved my English. The style employed for Romanization of Yiddish follows YIVO's transliteration standards. Unless otherwise noted, translations from the Yiddish, Hebrew, German, and Latin are my own. Quotations from the Bible follow the JPS translation, and those from the Babylonian Talmud are according to the Hebrew-English edition of the Soncino Talmud by Isidore Epstein
Superstrings on NS5 backgrounds, deformed AdS3 and holography
We study a non-standard decoupling limit of the D1/D5-brane system, which
interpolates between the near-horizon geometry of the D1/D5 background and the
near-horizon limit of the pure D5-brane geometry. The S-dual description of
this background is actually an exactly solvable two-dimensional (worldsheet)
conformal field theory: {null-deformed SL(2,R)} x SU(2) x T^4 or K3. This model
is free of strong-coupling singularities. By a careful treatment of the
SL(2,R), based on the better-understood SL(2,R) / U(1) coset, we obtain the
full partition function for superstrings on SL(2,R) x SU(2) x K3. This allows
us to compute the partition functions for the J^3 and J^2 current-current
deformations, as well as the full line of supersymmetric null deformations,
which links the SL(2,R) conformal field theory with linear dilaton theory. The
holographic interpretation of this setup is a renormalization-group flow
between the decoupled NS5-brane world-volume theory in the ultraviolet (Little
String Theory), and the low-energy dynamics of super Yang--Mills string-like
instantons in six dimensions.Comment: JHEP style, 59 pages, 1 figure; v2: minor changes, to appear in JHE
SunDial: embodied informal science education using GPS
Science centers serve a number of goals for visitors, ideally providing experiences that are educational, social, and meaningful. This paper describes SunDial, a handheld application developed for families to use at a science center.  Inspired by the idea of geocaching, the high-tech treasure hunting game that utilizes GPS technologies, SunDial asks families to use a single handheld device to locate and participate in a series of learning modules around the museum.  Observations of 10 families suggest that it supports rich informal science education experiences, provides insights about families’ interaction patterns around and with single handheld devices, and demonstrates the value of navigation as an educational experience.  Further, using recently released guidelines for Informal Science Education (ISE) experiences to inform the design process proved valuable, tying features of the technology to educational and social goals, and giving evidence that explicit reference to these guidelines can improve ISE experiences and technologies
Panoramic SETI: overall focal plane electronics and timing and network protocols
The PANOSETI experiment is an all-sky, all-the-time visible search for nanosecond to millisecond time-scale transients. The experiment will deploy observatory domes at several sites, each dome containing ~45 telescopes and covering ~4,440 square degrees. Here we describe the focal-plane electronics for the visible wavelength telescopes, each of which contains a Mother Board and four Quadrant Boards. On each quadrant board, 256 silicon photomultiplier (SiPM) photon detectors are arranged to measure pulse heights to search for nanosecond time-scale pulses. To simultaneously examine pulse widths over a large range of time scales (nanoseconds to milliseconds), the instrument implements both a Continuous Imaging Mode (CI-Mode) and a Pulse Height Mode (PH-Mode). Precise timing is implemented in the gateware with the White Rabbit protocol
Panoramic SETI: on-sky results from prototype telescopes and instrumental design
The Panoramic SETI (Search for Extraterrestrial Intelligence) experiment (PANOSETI) aims to detect and quantify optical transients from nanosecond to second precision over a large field-of-view (∼4,450 square-degrees). To meet these challenging timing and wide-field requirements, the PANOSETI experiment will use two assemblies of ∼45 telescopes to reject spurious signals by coincidence detection, each one comprising custom-made fast photon-counting hardware combined with (f/1.32) focusing optics. Preliminary on-sky results from pairs of PANOSETI prototype telescopes (100 sq.deg.) are presented in terms of instrument performance and false alarm rates. We found that a separation of >1 km between telescopes surveying the same field-of-view significantly reduces the number of false positives due to nearby sources (e.g., Cherenkov showers) in comparison to a side- by-side configuration of telescopes. Design considerations on the all-sky PANOSETI instrument and expected field-of-views are reported
Panoramic SETI: Program Update and High-Energy Astrophysics Applications
Optical SETI (Search for Extraterrestrial Intelligence) instruments that can
explore the very fast time domain, especially with large sky coverage, offer an
opportunity for new discoveries that can complement multimessenger and time
domain astrophysics. The Panoramic SETI experiment (PANOSETI) aims to observe
optical transients with nanosecond to second duration over a wide field-of-view
(2,500 sq.deg.) by using two assemblies of tens of telescopes to
reject spurious signals by coincidence detection. Three PANOSETI telescopes,
connected to a White Rabbit timing network used to synchronize clocks at the
nanosecond level, have been deployed at Lick Observatory on two sites separated
by a distance of 677 meters to distinguish nearby light sources (such as
Cherenkov light from particle showers in the Earth's atmosphere) from
astrophysical sources at large distances. In parallel to this deployment, we
present results obtained during four nights of simultaneous observations with
the four 12-meter VERITAS gamma-ray telescopes and two PANOSETI telescopes at
the Fred Lawrence Whipple Observatory. We report PANOSETI's first detection of
astrophysical gamma rays, comprising three events with energies in the range
between 15 TeV and 50 TeV. These were emitted by the Crab
Nebula, and identified as gamma rays using joint VERITAS observations.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes + Instrumentation
  conference, 2022, Montr\'eal, Qu\'ebec, Canad
High-dimensional single-cell analysis of human natural killer cell heterogeneity.
Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons
Mitochondrial DNA Variation, but Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons along an Ancient Geographic Barrier
The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel) into two subspecies, Chamaeleo chamaeleon recticrista (CCR) and C. c. musae (CCM). CCR mostly inhabits the Mediterranean climate (northern Israel), while CCM inhabits the sands of the north-western Negev Desert (southern Israel). AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097), consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA) fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79), which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp) generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient) local adaptation to mitochondrial-related traits
The Effects of Electoral Institutions in Rwanda: Why Proportional Representation Supports the Authoritarian Regime
- …
