117 research outputs found

    Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer

    Get PDF
    The increasing importance of immunoglobulins G (IgGs) as biotherapeutics calls for improved structural characterization methods designed for these large (~ 150 kDa) macromolecules. Analysis workflows have to be rapid, robust, and require minimal sample preparation. In a previous work we showed the potential of Orbitrap Fourier transform mass spectrometry (FTMS) combined with electron transfer dissociation (ETD) for the top-down investigation of an intact IgG1, resulting in ~ 30% sequence coverage. Here, we describe a top-down analysis of two IgGs1 (adalimumab and trastuzumab) and one IgG2 (panitumumab) performed with ETD on a mass spectrometer equipped with a high-field Orbitrap mass analyzer. For the IgGs1, sequence coverage comparable to the previous results was achieved in a two-fold reduced number of summed transients, which corresponds, taken together with the significantly increased spectra acquisition rate, to ~ six-fold improvement in analysis time. Furthermore, we studied the influence of ion-ion interaction times on ETD product ions for IgGs1, and the differences in fragmentation behavior between IgGs1 and IgG2, which present structural differences. Overall, these results reinforce the hypothesis that gas phase dissociation using both energy threshold-based and radical-driven ion activations is directed to specific regions of the polypeptide chains mostly by the location of disulfide bonds

    N-Glycan structures and N-glycosylation sites of mouse soluble intercellular adhesion molecule-1 revealed by MALDI-TOF and FTICR mass spectrometry

    Get PDF
    Intercellular adhesion molecule-1 (ICAM-1) is a heavily N‐glycosylated transmembrane protein comprising five extracellular Ig-like domains. The soluble isoform of ICAM-1 (sICAM-1), consisting of its extracellular part, is elevated in the cerebrospinal fluid of patients with severe brain trauma. In mouse astrocytes, recombinant mouse sICAM-1 induces the production of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 induction is glycosylation dependent, as it is strongly enhanced when sICAM-1 carries sialylated, complex-type N-glycans as synthesized by wild-type Chinese hamster ovary (CHO) cells. The present study was aimed at elucidating the N-glycosylation of mouse sICAM-1 expressed in wild-type CHO cells with regard to sialylation, N-glycan profile, and N-glycosylation sites. Ion-exchange chromatography and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of the released N-glycans showed that sICAM-1 mostly carried di- and trisialylated complex-type N-glycans with or without one fucose. In some sialylated N-glycans, one N-acetylneuraminic acid was replaced by N-glycolylneuraminic acid, and ∼4% carried a higher number of sialic acid residues than of antennae. The N-glycosylation sites of mouse sICAM-1 were analyzed by MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS and nanoLC-ESI-FTICR-MS of tryptic digests of mouse sICAM-1 expressed in the Lec1 mutant of CHO cells. All nine consensus sequences for N-glycosylation were found to be glycosylated. These results show that the N-glycans that enhance the MIP-2‐inducing activity of mouse sICAM-1 are mostly di- and trisialylated complex-type N-glycans including a small fraction carrying more sialic acid residues than antennae and that the nine N-glycosylation sites of mouse sICAM-1 are all glycosylate

    Nature Communications / Native mass spectrometry combined with enzymatic dissection unravels glycoform heterogeneity of biopharmaceuticals

    Get PDF
    Robust manufacturing processes resulting in consistent glycosylation are critical for the efficacy and safety of biopharmaceuticals. Information on glycosylation can be obtained by conventional bottomup methods but is often limited to the glycan or glycopeptide level. Here, we apply high-resolution native mass spectrometry (MS) for the characterization of the therapeutic fusion protein Etanercept to unravel glycoform heterogeneity in conditions of hitherto unmatched mass spectral complexity. Higher spatial resolution at lower charge states, an inherent characteristic of native MS, represents a key component for the successful revelation of glycan heterogeneity. Combined with enzymatic dissection using a set of proteases and glycosidases, assignment of specific glycoforms is achieved by transferring information from subunit to whole protein level. The application of native mass spectrometric analysis of intact Etanercept as a fingerprinting tool for the assessment of batch-to-batch variability is exemplified and may be extended to demonstrate comparability after changes in the biologic manufacturing process.(VLID)261711

    The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit

    Get PDF
    The delivery of Met-tRNAi to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNAi. We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is detected in HeLa cells and rabbit reticulocytes, indicating that it exists in vivo. In vitro, the MFC-GTP binds Met-tRNAi and delivers the tRNA to the ribosome at the same rate as the TC. However, MFC-GDP shows a greatly reduced affinity to Met-tRNAi compared to that for eIF2-GDP, suggesting that MFC components may play a role in the release of eIF2-GDP from the ribosome following AUG recognition. Since an MFC–Met-tRNAi complex is detected in cell lysates, it may be responsible for Met-tRNAi–40S ribosome binding in vivo, possibly together with the TC. However, the MFC protein components also bind individually to 40S ribosomes, creating the possibility that Met-tRNAi might bind directly to such 40S-factor complexes. Thus, three distinct pathways for Met-tRNAi delivery to the 40S ribosomal subunit are identified, but which one predominates in vivo remains to be elucidated

    A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3

    Get PDF
    Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target

    The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes

    Get PDF
    The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes

    Knowledge based identification of essential signaling from genome-scale siRNA experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A systems biology interpretation of genome-scale RNA interference (RNAi) experiments is complicated by scope, experimental variability and network signaling robustness. Over representation approaches (ORA), such as the Hypergeometric or z-score, are an established statistical framework used to associate RNA interference effectors to biologically annotated gene sets or pathways. These methods, however, do not directly take advantage of our growing understanding of the interactome. Furthermore, these methods can miss partial pathway activation and may be biased by protein complexes. Here we present a novel ORA, protein interaction permutation analysis (PIPA), that takes advantage of canonical pathways and established protein interactions to identify pathways enriched for protein interactions connecting RNAi hits.</p> <p>Results</p> <p>We use PIPA to analyze genome-scale siRNA cell growth screens performed in HeLa and TOV cell lines. First we show that interacting gene pair siRNA hits are more reproducible than single gene hits. Using protein interactions, PIPA identifies enriched pathways not found using the standard Hypergeometric analysis including the FAK <it>cytoskeletal remodeling pathway</it>. Different branches of the <it>FAK </it>pathway are distinctly essential in HeLa versus TOV cell lines while other portions are uneffected by siRNA perturbations. Enriched hits belong to protein interactions associated with cell cycle regulation, anti-apoptosis, and signal transduction.</p> <p>Conclusion</p> <p>PIPA provides an analytical framework to interpret siRNA screen data by merging biologically annotated gene sets with the human interactome. As a result we identify pathways and signaling hypotheses that are statistically enriched to effect cell growth in human cell lines. This method provides a complementary approach to standard gene set enrichment that utilizes the additional knowledge of specific interactions within biological gene sets. </p

    HSV Usurps Eukaryotic Initiation Factor 3 Subunit M for Viral Protein Translation: Novel Prevention Target

    Get PDF
    Prevention of genital herpes is a global health priority. B5, a recently identified ubiquitous human protein, was proposed as a candidate HSV entry receptor. The current studies explored its role in HSV infection. Viral plaque formation was reduced by ∼90% in human cells transfected with small interfering RNA targeting B5 or nectin-1, an established entry receptor. However, the mechanisms were distinct. Silencing of nectin-1 prevented intracellular delivery of viral capsids, nuclear transport of a viral tegument protein, and release of calcium stores required for entry. In contrast, B5 silencing had no effect on these markers of entry, but inhibited viral protein translation. Specifically, viral immediate early genes, ICP0 and ICP4, were transcribed, polyadenylated and transported from the nucleus to the cytoplasm, but the viral transcripts did not associate with ribosomes or polysomes in B5-silenced cells. In contrast, immediate early gene viral transcripts were detected in polysome fractions isolated from control cells. These findings are consistent with sequencing studies demonstrating that B5 is eukaryotic initiation factor 3 subunit m (eIF3m). Although B5 silencing altered the polysome profile of cells, silencing had little effect on cellular RNA or protein expression and was not cytotoxic, suggesting that this subunit is not essential for host cellular protein synthesis. Together these results demonstrate that B5 plays a major role in the initiation of HSV protein translation and could provide a novel target for strategies to prevent primary and recurrent herpetic disease

    Phosphorylation and Activation of the Plasma Membrane Na+/H+ Exchanger (NHE1) during Osmotic Cell Shrinkage

    Get PDF
    The Na+/H+ Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na+/H+ exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na+/H+ exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na+ transport capacity without affecting transport affinity (Km = 44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ 32P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na+ transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events

    An exploratory analysis examining the relationship between altruistic behaviours and self-reported anxiety among an Irish college student population during the Covid-19 pandemic

    No full text
    Aims: The present study aimed to provide an insight into the relationship between altruistic behaviour and self-reported anxiety among an Irish student population during the Covid-19 pandemic. This study examined whether altruistic behaviours correlate with self-reported anxiety and if altruistic behaviours influence self-reported anxiety among Irish college students in the context of the Covid-19 pandemic. This study also investigated whether there was a difference in altruistic behaviours among males and females. Methods: Participants (n=106) were provided with a questionnaire through social media which included an adapted version of The Self-Report Altruistic Personality Scale and The General Anxiety Disorder Questionnaire (GAD-7). Results: Results showed that higher levels of altruistic behaviours are associated with higher levels of self-reported anxiety. Altruistic behaviours explained 4.2% of variance in self-reported anxiety. Altruistic behaviours were found to uniquely influence self-reported anxiety levels to a statistically significant level. There was no significant difference among males and females in altruistic behaviours. Conclusion: Results show that higher altruistic behaviours correlate with higher self-reported anxiety levels which challenges previous research, possible reasons for the difference in results may be due to Covid-19 restrictions and the sample used. Findings identify how individuals differ in anxiety levels providing an important implication of therapy being tailored to meet individual’s needs
    corecore