845 research outputs found

    SpiroESTdb: a transcriptome database and online tool for sparganum expressed sequences tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sparganum (plerocercoid of <it>Spirometra erinacei</it>) is a parasite that possesses the remarkable ability to survive by successfully modifying its physiology and morphology to suit various hosts and can be found in various tissues, even the nervous system. However, surprisingly little is known about the molecular function of genes that are expressed during the course of the parasite life cycle. To begin to decipher the molecular processes underlying gene function, we constructed a database of expressed sequence tags (ESTs) generated from sparganum.</p> <p>Findings</p> <p>SpiroESTdb is a web-based information resource that is built upon the annotation and curation of 5,655 ESTs data. SpiroESTdb provides an integrated platform for expressed sequence data, expression dynamics, functional genes, genetic markers including single nucleotide polymorphisms and tandem repeats, gene ontology and KEGG pathway information. Moreover, SpiroESTdb supports easy access to gene pages, such as (i) curation and query forms, (ii) <it>in </it><it>silico </it>expression profiling and (iii) BLAST search tools. Comprehensive descriptions of the sparganum content of all sequenced data are available, including summary reports. The contents of SpiroESTdb can be viewed and downloaded from the web (<url>http://pathod.cdc.go.kr/spiroestdb</url>).</p> <p>Conclusions</p> <p>This integrative web-based database of sequence data, functional annotations and expression profiling data will serve as a useful tool to help understand and expand the characterization of parasitic infections. It can also be used to identify potential industrial drug targets and vaccine candidate genes.</p

    Cilostazol Prevents Tumor Necrosis Factor-␣-Induced Cell Death by Suppression of Phosphatase and Tensin Homolog Deleted from Chromosome 10 Phosphorylation and Activation of Akt/Cyclic AMP Response Element-Binding Protein Phosphorylation

    Get PDF
    ABSTRACT This study examines the signaling mechanism by which cilostazol prevents neuronal cell death. Cilostazol (ϳ0.1-100 M) prevented tumor necrosis factor-␣ (TNF-␣)-induced decrease in viability of SK-N-SH and HCN-1A cells, which was antagonized by 1 M iberiotoxin, a maxi-K channel blocker. TNF-␣ did not suppress the viability of the U87-MG cell, a phosphatase and tensin homolog deleted from chromosome 10 (PTEN)-null glioblastoma cell, but it did decrease viability of U87-MG cells transfected with expression vectors for the sense PTEN, and this decrease was also prevented by cilostazol. Cilostazol as well as 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619) and (3S)-(ϩ)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indole-2-one (BMS 204352), maxi-K channel openers, prevented increased DNA fragmentation evoked by TNF-␣, which were antagonizable by iberiotoxin. TNF-␣-induced increased PTEN phosphorylation and decreased Akt/ cyclic AMP response element-binding protein (CREB) phosphorylation were significantly prevented by cilostazol, those of which were antagonized by both iberiotoxin and paxilline, maxi-K channel blockers. The same results were evident in U87-MG cells transfected with expression vectors for sense PTEN. Cilostazol increases the K ϩ current in SK-N-SH cells by activating maxi-K channels without affecting the ATP-sensitive K ϩ channel. Thus, our results for the first time provide evidence that cilostazol prevents TNF-␣-induced cell death by suppression of PTEN phosphorylation and activation of Akt/CREB phosphorylation via mediation of the maxi-K channel opening. Recent research has shown that the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is implicated in the regulation of several cellular functions, including cell viability from apoptosi

    Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    Get PDF
    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens

    The Arabidopsis thaliana Homeobox Gene ATHB12 Is Involved in Symptom Development Caused by Geminivirus Infection

    Get PDF
    BACKGROUND: Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV). Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. METHODOLOGY/PRINCIPAL FINDINGS: Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were induced. CONCLUSIONS/SIGNIFICANCE: These results suggest that ATHB7 and ATHB12 may play an important role in the activation of the abnormal cell division associated with symptom development during geminivirus infection

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore