129 research outputs found

    Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals

    Get PDF
    We explore the dynamics of blue emission from dodecylamine and ammonia functionalized silicon nanocrystals (Si NCs) with average diameters of ∼3 and ∼6 nm using time-resolved photoluminescence (TRPL) spectroscopy. The Si NCs exhibit nanosecond PL decay dynamics that is independent of NC size and uniform across the emission spectrum. The TRPL measurements reveal complete quenching of core state emission by a charge transfer state that is responsible for the blue PL with a radiative recombination rate of ∼5 × 10^7 s^(−1). A detailed picture of the charge transfer state emission dynamics in these functionalized Si NCs is proposed

    The embeddedness of organizational performance: multiple membership multiple classification models for the analysis of multilevel networks

    Get PDF
    We present a Multiple Membership Multiple Classification (MMMC) model for analysing variation in the performance of organizational sub-units embedded in a multilevel network. The model postulates that the performance of organizational sub-units varies across network levels defined in terms of: (i) direct relations between organizational sub-units; (ii) relations between organizations containing the sub-units, and (iii) cross-level relations between sub-units and organizations. We demonstrate the empirical mer- its of the model in an analysis of inter-hospital patient mobility within a regional community of health care organizations. In the empirical case study we develop, organizational sub-units are departments of emergency medicine (EDs) located within hospitals (organizations). Networks within and across levels are delineated in terms of patient transfer relations between EDs (lower-level, emergency transfers), hospitals (higher-level, elective transfers), and between EDs and hospitals (cross-level, non-emergency transfers). Our main analytical objective is to examine the association of these interdependent and par- tially nested levels of action with variation in waiting time among EDs – one of the most commonly adopted and accepted measures of ED performance. We find evidence that variation in ED waiting time is associated with various components of the multilevel network in which the EDs are embedded. Before allowing for various characteristics of EDs and the hospitals in which they are located, we find, for the null models, that most of the network variation is at the hospital level. After adding these characteris- tics to the model, we find that hospital capacity and ED uncertainty are significantly associated with ED waiting time. We also find that the overall variation in ED waiting time is reduced to less than a half of its estimated value from the null models, and that a greater share of the residual network variation for these models is at the ED level and cross level, rather than the hospital level. This suggests that the covari- ates explain some of the network variation, and shift the relative share of residual variation away from hospital networks. We discuss further extensions to the model for more general analyses of multilevel network dependencies in variables of interest for the lower level nodes of these social structures

    Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes

    Get PDF
    In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A0–A2 sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex

    Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases

    Get PDF
    Abstract Inflammatory diseases of the aorta include routine atherosclerosis, aortitis, periaortitis, and atherosclerosis with excessive inflammatory responses, such as inflammatory atherosclerotic aneurysms. The nomenclature and histologic features of these disorders are reviewed and discussed. In addition, diagnostic criteria are provided to distinguish between these disorders in surgical pathology specimens. An initial classification scheme is provided for aortitis and periaortitis based on the pattern of the inflammatory infiltrate: granulomatous/giant cell pattern, lymphoplasmacytic pattern, mixed inflammatory pattern, and the suppurative pattern. These inflammatory patterns are discussed in relation to specific systemic diseases including giant cell arteritis, Takayasu arteritis, granulomatosis with polyangiitis (Wegener's), rheumatoid arthritis, sarcoidosis, ankylosing spondylitis, Cogan syndrome, Behcet's disease, relapsing polychondritis, syphilitic aortitis, and bacterial and fungal infections

    Cardioembolic Stroke in Atrial Fibrillation-Rationale for Preventive Closure of the Left Atrial Appendage

    Get PDF
    Atrial fibrillation is the most common cardiac arrhythmias, and a major cause of morbidity and mortality due to cardioembolic stroke. The left atrial appendage is the major site of thrombus formation in non-valvular atrial fibrillation. Loss of atrial systole in atrial fibrillation and increased relative risk of associated stroke point strongly toward a role for stasis of blood in left atrial thrombosis, although thrombus formation is multifactorial, and much more than blood flow irregularities are implicated. Oral anticoagulation with vitamin-K-antagonists is currently the most effective prophylaxis for stroke in atrial fibrillation. Unfortunately, this treatment is often contraindicated, particularly in the elderly, in whom risk of stroke is high. Moreover, given the risk of major bleeding, there is reason to be skeptical of the net benefit when warfarin is used in those patients. This work reviews the pathophysiology of cardioembolic stroke and critically spotlights the current status of preventive anticoagulation therapy. Various techniques to exclude the left atrial appendage from circulation were discussed as a considerable alternative for stroke prophylaxis

    Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography

    Get PDF
    Cancer therapy has shown terrific progress leading to important reduction of morbidity and mortality of several kinds of cancer. The therapeutic management of oncologic patients includes combinations of drugs, radiation therapy and surgery. Many of these therapies produce adverse cardiovascular complications which may negatively affect both the quality of life and the prognosis. For several years the most common noninvasive method of monitoring cardiotoxicity has been represented by radionuclide ventriculography while other tests as effort EKG and stress myocardial perfusion imaging may detect ischemic complications, and 24-hour Holter monitoring unmask suspected arrhythmias. Also biomarkers such as troponine I and T and B-type natriuretic peptide may be useful for early detection of cardiotoxicity. Today, the widely used non-invasive method of monitoring cardiotoxicity of cancer therapy is, however, represented by Doppler-echocardiography which allows to identify the main forms of cardiac complications of cancer therapy: left ventricular (systolic and diastolic) dysfunction, valve heart disease, pericarditis and pericardial effusion, carotid artery lesions. Advanced ultrasound tools, as Integrated Backscatter and Tissue Doppler, but also simple ultrasound detection of "lung comet" on the anterior and lateral chest can be helpful for early, subclinical diagnosis of cardiac involvement. Serial Doppler echocardiographic evaluation has to be encouraged in the oncologic patients, before, during and even late after therapy completion. This is crucial when using anthracyclines, which have early but, most importantly, late, cumulative cardiac toxicity. The echocardiographic monitoring appears even indispensable after radiation therapy, whose detrimental effects may appear several years after the end of irradiation
    corecore