489 research outputs found

    Unsupervised machine learning to investigate trajectory patterns of COVID-19 symptoms and physical activity measured via the MyHeart Counts App and smart devices

    Get PDF
    Previous studies have associated COVID-19 symptoms severity with levels of physical activity. We therefore investigated longitudinal trajectories of COVID-19 symptoms in a cohort of healthcare workers (HCWs) with non-hospitalised COVID-19 and their real-world physical activity. 121 HCWs with a history of COVID-19 infection who had symptoms monitored through at least two research clinic visits, and via smartphone were examined. HCWs with a compatible smartphone were provided with an Apple Watch Series 4 and were asked to install the MyHeart Counts Study App to collect COVID-19 symptom data and multiple physical activity parameters. Unsupervised classification analysis of symptoms identified two trajectory patterns of long and short symptom duration. The prevalence for longitudinal persistence of any COVID-19 symptom was 36% with fatigue and loss of smell being the two most prevalent individual symptom trajectories (24.8% and 21.5%, respectively). 8 physical activity features obtained via the MyHeart Counts App identified two groups of trajectories for high and low activity. Of these 8 parameters only ‘distance moved walking or running’ was associated with COVID-19 symptom trajectories. We report a high prevalence of long-term symptoms of COVID-19 in a non-hospitalised cohort of HCWs, a method to identify physical activity trends, and investigate their association. These data highlight the importance of tracking symptoms from onset to recovery even in non-hospitalised COVID-19 individuals. The increasing ease in collecting real-world physical activity data non-invasively from wearable devices provides opportunity to investigate the association of physical activity to symptoms of COVID-19 and other cardio-respiratory diseases

    Design, Synthesis, and Evaluation of 2,9-Bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline Derivatives as G-Quadruplex Ligands.

    Get PDF
    International audienceGenomic sequences able to form guanine quadruplexes (G4) are found in oncogene promoters, in telomeres, and in 5'- and 3'-untranslated regions as well as introns of messenger RNAs. These regions are potential targets for drugs designed to treat cancer. Herein, we present the design and syntheses of ten new phenanthroline derivatives and characterization of their interactions with G4-forming oligonucleotides. We evaluated ligand-induced stabilization and specificity and selectivity of ligands for various G4 conformations using FRET-melting experiments. We investigated the interaction of compound 1 a (2,9-bis{4-[(3-dimethylaminopropyl)aminomethyl]phenyl}-1,10-phenanthroline), which combined the greatest stabilizing effect and specificity for G4, with human telomeric sequences using FRET, circular dichroism, and ESI-MS. In addition, we showed that compound 1 a interferes with the G4 helicase activity of Saccharomyces cerevisiae Pif1. Interestingly, compound 1 a was significantly more cytotoxic toward two human leukemic cell lines than to normal human blood mononuclear cells. These novel phenanthroline derivatives will be a starting point for further development and optimization of potent G4 ligands that have potential as anticancer agents

    Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae

    Get PDF
    G-quadruplexes are nucleic acid secondary structures for which many biological roles have been proposed but whose existence in vivo has remained elusive. To assess their formation, highly specific G-quadruplex ligands are needed. Here, we tested Phen-DC3 and Phen-DC6, two recently released ligands of the bisquinolinium class. In vitro, both compounds exhibit high affinity for the G4 formed by the human minisatellite CEB1 and inhibit efficiently their unwinding by the yeast Pif1 helicase. In vivo, both compounds rapidly induced recombination-dependent rearrangements of CEB1 inserted in the Saccharomyces cerevisiae genome, but did not affect the stability of other tandem repeats lacking G-quadruplex forming sequences. The rearrangements yielded simple-deletion, double-deletion or complex reshuffling of the polymorphic motif units, mimicking the phenotype of the Pif1 inactivation. Treatment of Pif1-deficient cells with the Phen-DC compounds further increased CEB1 instability, revealing additional G4 formation per cell. In sharp contrast, the commonly used N-methyl-mesoporphyrin IX G-quadruplex ligand did not affect CEB1 stability. Altogether, these results demonstrate that the Phen-DC bisquinolinium compounds are potent molecular tools for probing the formation of G-quadruplexes in vivo, interfere with their processing and elucidate their biological roles

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    The impact of menopause on bone, zoledronic acid, and implications for breast cancer growth and metastasis

    Get PDF
    Recent data from the AZURE, ABCSG-12, and ZO-FAST clinical trials have challenged our understanding of the potential anticancer activity of zoledronic acid (ZOL). Although the results of these studies may appear to be conflicting on the surface, a deeper look into commonalities among the patient populations suggest that some host factors (i.e. patient age and endocrine status) may contribute to the anticancer activity of ZOL. Indeed, data from these large clinical trials suggest that the potential anticancer activity of ZOL may be most robust in a low-estrogen environment. However, this may be only part of the story and many questions remain to be answered to fully explain the phenomenon. Does estrogen override the anticancer activity of ZOL seen in postmenopausal women? Are hormones other than estrogen involved that contribute to this effect? Does the role of bone turnover in breast cancer (BC) growth and progression differ in the presence of various estrogen levels? Here, we present a review of the multitude of factors affected by different endocrine environments in women with BC that may influence the potential anticancer activity of ZOL

    Interaction of human telomeric DNA with N-methyl mesoporphyrin IX

    Get PDF
    The remarkable selectivity of N-methyl mesoporphyrin IX (NMM) for G-quadruplexes (GQs) is long known, however its ability to stabilize and bind GQs has not been investigated in detail. Through the use of circular dichroism, UV-visible spectroscopy and fluorescence resonance energy transfer (FRET) melting assay we have shown that NMM stabilizes human telomeric DNA dAG3(TTAG3)3 (Tel22) and is selective for its parallel conformation to which it binds in 1:1 stoichiometry with a binding constant of ∼1.0 × 105 M−1. NMM does not interact with an antiparallel conformation of Tel22 in sodium buffer and is the second example in the literature, after TOxaPy, of a ligand with an excellent selectivity for a specific GQ structure. NMM's stabilizing ability toward predominantly parallel GQ conformation is universal: it stabilizes a variety of biologically relevant G-rich sequences including telomeres and oncogene promoters. The N-methyl group is integral for selectivity and stabilization, as the unmethylated analogue, mesoporphyrin IX, does not stabilize GQ DNA in FRET melting assays. Finally, NMM induces the isomerization of Tel22 into a structure with increased parallel component in K+ but not in Na+ buffer. The ability of NMM to cause structural rearrangement and efficient stabilization of Tel22 may bear biological significance

    Women with breast cancer taking chemotherapy: depression symptoms and treatment adherence

    Get PDF
    Objective to verify depressive symptoms and adherence to chemotherapy among women with breast cancer who are served by the Pharmacy of the Chemotherapy Center of a university hospital.METHOD: cross-sectional study with quantitative approach conducted with 112 women receiving chemotherapy. Structured interviews guided by a script addressing socio-demographic, clinical and therapeutic information, the Morisky Test, and the Beck Depression Inventory were used to collect data.RESULTS: 12.50% and 1.78% of the patients experienced "moderate" and "severe" depression, respectively, while 10.59% did not use antidepressant medication. A statistically significant association was found between levels of depression and the use of antidepressants. Lack of adherence was identified in 46.43% of the participants.CONCLUSION: these findings show the need to regularly screen for depressive symptoms and for adherence to chemotherapy treatment among women with breast cancer, in order to provide early detection and appropriate treatment centered on patients, and to improve their quality of life

    Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms

    Get PDF
    Sigma-1 (σ1) receptor antagonists are promising tools for neuropathic pain treatment, but it is unknown whether σ1 receptor inhibition ameliorates the neuropathic signs induced by nerve transection, in which the pathophysiological mechanisms and response to drug treatment differ from other neuropathic pain models. In addition, σ1 antagonism ameliorates inflammatory pain through modulation of the endogenous opioid system, but it is unknown whether this occurs during neuropathic pain. We investigated the effect of σ1 inhibition on the painful hypersensitivity associated with the spared nerve injury (SNI) model in mice. Wildtype (WT) mice developed prominent cold (acetone test), mechanical (von Frey test), and heat hypersensitivity (Hargreaves test) after SNI. σ1 receptor knockout (σ1-KO) mice did not develop cold allodynia and showed significantly less mechanical allodynia, although they developed heat hyperalgesia after SNI.IB-C was supported by an FPU grant from the Spanish Ministry of Education, Culture, and Sports. This study was partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO, grant SAF2016-80540-R), the Junta de Andalucía (grant CTS 109), and funding from Esteve and the European Regional Development Fund (ERDF). This research was done in partial fulfillment of the requirements for the doctoral thesis of IB-C

    Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential

    Get PDF
    The human Werner and Bloom syndromes (WS and BS) are caused by deficiencies in the WRN and BLM RecQ helicases, respectively. WRN, BLM and their Saccharomyces cerevisiae homologue Sgs1, are particularly active in vitro in unwinding G-quadruplex DNA (G4-DNA), a family of non-canonical nucleic acid structures formed by certain G-rich sequences. Recently, mRNA levels from loci containing potential G-quadruplex-forming sequences (PQS) were found to be preferentially altered in sgs1Δ mutants, suggesting that G4-DNA targeting by Sgs1 directly affects gene expression. Here, we extend these findings to human cells. Using microarrays to measure mRNAs obtained from human fibroblasts deficient for various RecQ family helicases, we observe significant associations between loci that are upregulated in WS or BS cells and loci that have PQS. No such PQS associations were observed for control expression datasets, however. Furthermore, upregulated genes in WS and BS showed no or dramatically reduced associations with sequences similar to PQS but that have considerably reduced potential to form intramolecular G4-DNA. These findings indicate that, like Sgs1, WRN and BLM can regulate transcription globally by targeting G4-DNA
    corecore