2,517 research outputs found

    Elasticity of Semiflexible Biopolymer Networks

    Full text link
    We develop a model for gels and entangled solutions of semiflexible biopolymers such as F-actin. Such networks play a crucial structural role in the cytoskeleton of cells. We show that the rheologic properties of these networks can result from nonclassical rubber elasticity. This model can explain a number of elastic properties of such networks {\em in vitro}, including the concentration dependence of the storage modulus and yield strain.Comment: Uses RevTeX, full postscript with figures available at http://www.umich.edu/~fcm/preprints/agel/agel.htm

    Population rate codes carried by mean, fluctuation and synchrony of neuronal firings

    Full text link
    A population of firing neurons is expected to carry information not only by mean firing rate but also by fluctuation and synchrony among neurons. In order to examine this possibility, we have studied responses of neuronal ensembles to three kinds of inputs: mean-, fluctuation- and synchrony-driven inputs. The generalized rate-code model including additive and multiplicative noise (H. Hasegawa, Phys. Rev. E {\bf 75} (2007) 051904) has been studied by direct simulations (DSs) and the augmented moment method (AMM) in which equations of motion for mean firing rate, fluctuation and synchrony are derived. Results calculated by the AMM are in good agreement with those by DSs. The independent component analysis (ICA) of our results has shown that mean firing rate, fluctuation (or variability) and synchrony may carry independent information in the population rate-code model. The input-output relation of mean firing rates is shown to have higher sensitivity for larger multiplicative noise, as recently observed in prefrontal cortex. A comparison is made between results obtained by the integrate-and-fire (IF) model and our rate-code model.Comment: 20 pages, 10 figures, accepted in Physica A (revised version of arXiv:0706.3489

    Representations of the radiated energy in earthquakes

    Get PDF
    We investigate the representation of the radiated energy, E_R, in earthquakes. In seismology E_R is estimated from either far-field seismic waves or the stress and displacement on the fault plane. Although E_R comes from the entire volume of the Earth, it can be expressed as an integral over the fault plane. However, the integrand cannot be given a simple physical meaning such as the radiated energy density on the fault plane. The stress on the fault plane changes rapidly during a seismic rupture. Although the energy radiated by this process is not included in the estimate of E_R in a simplified practice in seismology, it is correctly included in the expression of E_R in standard seismological practice. Using the representation theorem, we can express E_R as a surface integral over the fault plane, with the integrand containing the slip function on the fault plane. However, the integrand at a point depends not only on the slip function at the point but also on the slip functions everywhere on the fault plane. Thus, the simple method in which E_R is estimated by summation of the local energy flux on the fault plane does not yield a correct estimate

    Second chances: Investigating athletes’ experiences of talent transfer

    Get PDF
    Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psychobehavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives

    Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach

    Get PDF
    <div><p>The associations between time spent in sleep, sedentary behaviors (SB) and physical activity with health are usually studied without taking into account that time is finite during the day, so time spent in each of these behaviors are codependent. Therefore, little is known about the combined effect of time spent in sleep, SB and physical activity, that together constitute a composite whole, on obesity and cardio-metabolic health markers. Cross-sectional analysis of NHANES 2005–6 cycle on N = 1937 adults, was undertaken using a compositional analysis paradigm, which accounts for this intrinsic codependence. Time spent in SB, light intensity (LIPA) and moderate to vigorous activity (MVPA) was determined from accelerometry and combined with self-reported sleep time to obtain the 24 hour time budget composition. The distribution of time spent in sleep, SB, LIPA and MVPA is significantly associated with BMI, waist circumference, triglycerides, plasma glucose, plasma insulin (all p<0.001), and systolic (p<0.001) and diastolic blood pressure (p<0.003), but not HDL or LDL. Within the composition, the strongest positive effect is found for the proportion of time spent in MVPA. Strikingly, the effects of MVPA replacing another behavior and of MVPA being displaced by another behavior are asymmetric. For example, re-allocating 10 minutes of SB to MVPA was associated with a lower waist circumference by 0.001% but if 10 minutes of MVPA is displaced by SB this was associated with a 0.84% higher waist circumference. The proportion of time spent in LIPA and SB were detrimentally associated with obesity and cardiovascular disease markers, but the association with SB was stronger. For diabetes risk markers, replacing SB with LIPA was associated with more favorable outcomes. Time spent in MVPA is an important target for intervention and preventing transfer of time from LIPA to SB might lessen the negative effects of physical inactivity.</p></div

    Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises

    Full text link
    Dynamics of an ensemble of NN-unit FitzHugh-Nagumo (FN) neurons subject to white noises has been studied by using a semi-analytical dynamical mean-field (DMF) theory in which the original 2N2 N-dimensional {\it stochastic} differential equations are replaced by 8-dimensional {\it deterministic} differential equations expressed in terms of moments of local and global variables. Our DMF theory, which assumes weak noises and the Gaussian distribution of state variables, goes beyond weak couplings among constituent neurons. By using the expression for the firing probability due to an applied single spike, we have discussed effects of noises, synaptic couplings and the size of the ensemble on the spike timing precision, which is shown to be improved by increasing the size of the neuron ensemble, even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles respond to an input spike with a partial synchronization. DMF theory is extended to a large cluster which can be divided into multiple sub-clusters according to their functions. A model calculation has shown that when the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy sub-clusters with feed-forward couplings, as in the synfire chain. Results calculated by our DMF theory are nicely compared to those obtained by direct simulations. A comparison of DMF theory with the conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice

    Visualizing Early Frog Development with Motion-Sensitive 3-D Optical Coherence Microscopy

    Get PDF
    A motion-sensitive en-face-scanning 3-D optical coherence microscope (OCM) has been designed and constructed to study critical events in the early development of plants and animals. We describe the OCM instrument and present time-lapse movies of frog gastrulation, an early developmental event in which three distinct tissue layers are established that later give rise to all major organ systems. OCM images constructed with fringe-amplitude data show the mesendoderm migrating up along the blastocoel roof, thus forming the inner two tissue layers. Motion-sigma data, measuring the random motion of scatterers, is used to construct complementary images that indicate the presence of Brownian motion in the yolk cells of the endoderm. This random motion provides additional intrinsic contrast that helps to distinguish different tissue types. Depth penetration at 850 nm is sufficient for studies of the outer ectoderm layer, but is not quite adequate for detailed study of the blastocoel floor, about 500 to 800 μm deep into the embryo. However, we measure the optical attenuation of these embryos to be about 35% less at 1310 nm. 2-D OCT images at 1310 nm are presented that promise sufficient depth penetration to test current models of cell movement near the blastocoel floor during gastrulation

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24&nbsp;months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500&nbsp;steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30&nbsp;minutes spent performing activities ≥500&nbsp;counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24&nbsp;months), both the number of steps per day (per 500&nbsp;steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500&nbsp;counts per minute (per 30&nbsp;minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score &gt;10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Alternative farrowing systems: design criteria for farrowing systems based on the biological needs of sows and piglets

    Get PDF
    The construction of a suitable farrowing environment is a continuing dilemma: the piglet's needs must be matched with those of the sow and the farmer during the main phases that constitute farrowing: nest building, parturition and lactation. Difficulties exist in resolving the various conflicts of interest between and within these three parties (e. g. sow v. farmer: space needed for nest building v. space needed to maximise the amount of farrowing accommodation, or sow v. sow: ensuring the survival of the current litter v. maintaining condition for future litters). Thus, the challenge is to resolve these conflicts and design a system that maximises sow and piglet welfare while maintaining an economically efficient and sustainable enterprise. In order to successfully design a farrowing and lactation environment, it is necessary to consider the biological needs of both the sow and her litter. The natural behaviour of the sow has been well documented and very little variation exists between reports of peri-parturient behaviour observed in extensively kept domestic sows and their wild counterparts. The failure for domestication to significantly alter these behavioural patterns provides evidence that they are biologically significant and that the commercial farrowing environment should attempt to accommodate this behavioural repertoire. In addition, the behavioural needs of the piglets, as well as the physiological needs of both sows and their offspring should be considered. This article aims to review the considerable body of literature detailing the behavioural repertoire of sows and their offspring during the different phases of farrowing, and the accompanying physiological processes. The focus is on identifying biological needs of the animals involved in order to synthesise the appropriate design criteria for farrowing and lactation systems, which should optimise both welfare and animal production.</p
    corecore