544 research outputs found

    A Robust AFPTAS for Online Bin Packing with Polynomial Migration

    Get PDF
    In this paper we develop general LP and ILP techniques to find an approximate solution with improved objective value close to an existing solution. The task of improving an approximate solution is closely related to a classical theorem of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is often applied in designing robust algorithms for online problems. We apply our new techniques to the online bin packing problem, where it is allowed to reassign a certain number of items, measured by the migration factor. The migration factor is defined by the total size of reassigned items divided by the size of the arriving item. We obtain a robust asymptotic fully polynomial time approximation scheme (AFPTAS) for the online bin packing problem with migration factor bounded by a polynomial in 1ϵ\frac{1}{\epsilon}. This answers an open question stated by Epstein and Levin in the affirmative. As a byproduct we prove an approximate variant of the sensitivity theorem by Cook at el. for linear programs

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    Induction of neural crest stem cells from Bardet–Biedl syndrome patient derived hiPSCs

    Get PDF
    Neural crest cells arise in the embryo from the neural plate border and migrate throughout the body, giving rise to many different tissue types such as bones and cartilage of the face, smooth muscles, neurons, and melanocytes. While studied extensively in animal models, neural crest development and disease have been poorly described in humans due to the challenges in accessing embryonic tissues. In recent years, patient-derived human induced pluripotent stem cells (hiPSCs) have become easier to generate, and several streamlined protocols have enabled robust differentiation of hiPSCs to the neural crest lineage. Thus, a unique opportunity is offered for modeling neurocristopathies using patient specific stem cell lines. In this work, we make use of hiPSCs derived from patients affected by the Bardet–Biedl Syndrome (BBS) ciliopathy. BBS patients often exhibit subclinical craniofacial dysmorphisms that are likely to be associated with the neural crest-derived facial skeleton. We focus on hiPSCs carrying variants in the BBS10 gene, which encodes a protein forming part of a chaperonin-like complex associated with the cilium. Here, we establish a pipeline for profiling hiPSCs during differentiation toward the neural crest stem cell fate. This can be used to characterize the differentiation properties of the neural crest-like cells. Two different BBS10 mutant lines showed a reduction in expression of the characteristic neural crest gene expression profile. Further analysis of both BBS10 mutant lines highlighted the inability of these mutant lines to differentiate toward a neural crest fate, which was also characterized by a decreased WNT and BMP response. Altogether, our study suggests a requirement for wild-type BBS10 in human neural crest development. In the long term, approaches such as the one we describe will allow direct comparison of disease-specific cell lines. This will provide valuable insights into the relationships between genetic background and heterogeneity in cellular models. The possibility of integrating laboratory data with clinical phenotypes will move us toward precision medicine approaches

    Matrix Metalloproteinase 9 and Vascular Endothelial Growth Factor Are Essential for Osteoclast Recruitment into Developing Long Bones

    Get PDF
    Bone development requires the recruitment of osteoclast precursors from surrounding mesenchyme, thereby allowing the key events of bone growth such as marrow cavity formation, capillary invasion, and matrix remodeling. We demonstrate that mice deficient in gelatinase B/matrix metalloproteinase (MMP)-9 exhibit a delay in osteoclast recruitment. Histological analysis and specialized invasion and bone resorption models show that MMP-9 is specifically required for the invasion of osteoclasts and endothelial cells into the discontinuously mineralized hypertrophic cartilage that fills the core of the diaphysis. However, MMPs other than MMP-9 are required for the passage of the cells through unmineralized type I collagen of the nascent bone collar, and play a role in resorption of mineralized matrix. MMP-9 stimulates the solubilization of unmineralized cartilage by MMP-13, a collagenase highly expressed in hypertrophic cartilage before osteoclast invasion. Hypertrophic cartilage also expresses vascular endothelial growth factor (VEGF), which binds to extracellular matrix and is made bioavailable by MMP-9 (Bergers, G., R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan. 2000. Nat. Cell Biol. 2:737–744). We show that VEGF is a chemoattractant for osteoclasts. Moreover, invasion of osteoclasts into the hypertrophic cartilage requires VEGF because it is inhibited by blocking VEGF function. These observations identify specific actions of MMP-9 and VEGF that are critical for early bone development

    Comparison of single-incision mini-slings (Ajust) and standard transobturator midurethral slings (Align) in the management of female stress urinary incontinence: A 1-year follow-up

    Get PDF
    AbstractObjectiveTo investigate the effectiveness and safety of a new single-incision mini-sling (SIMS)—Ajust—compared with the standard transobturator midurethral sling (SMUS)—Align—for the treatment of female stress urinary incontinence (SUI).Materials and MethodsA retrospective cohort study was conducted between January 1, 2010 and August 31, 2012. Women with SUI who underwent either SMUS-Align or SIMS-Ajust were recruited. The primary outcomes included operation time, estimated operative blood loss, postoperative pain, and complications. The secondary outcomes included subjective and objective success, defined as an International Consultation on Incontinence Questionnaire (ICIQ) score of 0 or improvement as felt by the patient and a long-term complication, such as dyspareunia and mesh erosion after 6 months and 12 months of follow-up.ResultsA total of 136 patients were enrolled, including 76 receiving SMUS-Align and 60 receiving SIMS-Ajust. Baseline characteristics of the patients in both groups were similar, without a statistically significant difference. Primary outcomes between both groups were similar, except that women treated with SIMS-Ajust had statistically significantly shorter operation time (p = 0.003), less intent to treat (p < 0.05), and earlier postoperative discharge (p = 0.001) than women treated with SMUS-Align. Secondary outcomes were similar without a significant difference between the two groups (93% vs. 88% success rate in each group).ConclusionOur results showed that SIMS-Ajust was not inferior to SMUS-Align with respect to success rate, and might have a slight advantage in early discharge. A long-term follow-up or prospective study is needed to confirm the above findings

    Microarray-Based Class Discovery for Molecular Classification of Breast Cancer: Analysis of Interobserver Agreement

    Get PDF
    Background Breast cancers can be classified by hierarchical clustering using an "intrinsic" gene list into one of at least five molecular subtypes: basal-like, HER2, luminal A, luminal B, and normal breast-like. Five different intrinsic gene lists composed of varying numbers of genes have been used for molecular subtype identification and classification of breast cancers. The aim of this study was to determine the objectivity and interobserver reproducibility of the assignment of molecular subtype classes by hierarchical cluster analysis. Methods Three publicly available breast cancer datasets (n = 779) were subjected to two-way average-linkage hierarchical cluster analysis using five distinct intrinsic gene lists. We used free-marginal Kappa statistics to analyze interobserver agreement among five breast cancer researchers for the whole classification and for each molecular subtype separately according to each intrinsic gene list for each breast cancer dataset. Results None of the classification systems tested produced almost perfect agreement (Kappa >= 0.81) among observers. However, substantial interobserver agreement (70.8% to 76.1% of the samples and free-marginal Kappa scores from 0.635 to 0.701) was consistently observed in all datasets for four molecular subtypes (luminal, basal-like, HER2, and normal breast-like). When luminal cancers were subdivided (luminal A, B, and C), none of the classification systems produced substantial agreement (Kappa >= 0.61) in all the datasets analyzed. Analysis of each subtype separately revealed that only two (basal-like and HER2) could be reproducibly identified by independent observers (Kappa >= 0.81). Conclusions Assignment of molecular subtype classes of breast cancer based on the analysis of dendrograms obtained with hierarchical cluster analysis is subjective and shows modest interobserver reproducibility. For the development of a molecular taxonomy, objective definitions for each molecular subtype and standardized methods for their identification are required

    c-Rel Controls Multiple Discrete Steps in the Thymic Development of Foxp3+ CD4 Regulatory T Cells

    Get PDF
    The development of natural Foxp3+ CD4 regulatory T cells (nTregs) proceeds via two steps that involve the initial antigen dependent generation of CD25+GITRhiFoxp3−CD4+ nTreg precursors followed by the cytokine induction of Foxp3. Using mutant mouse models that lack c-Rel, the critical NF-κB transcription factor required for nTreg differentiation, we establish that c-Rel regulates both of these developmental steps. c-Rel controls the generation of nTreg precursors via a haplo-insufficient mechanism, indicating that this step is highly sensitive to c-Rel levels. However, maintenance of c-Rel in an inactive state in nTreg precursors demonstrates that it is not required for a constitutive function in these cells. While the subsequent IL-2 induction of Foxp3 in nTreg precursors requires c-Rel, this developmental transition does not coincide with the nuclear expression of c-Rel. Collectively, our results support a model of nTreg differentiation in which c-Rel generates a permissive state for foxp3 transcription during the development of nTreg precursors that influences the subsequent IL-2 dependent induction of Foxp3 without a need for c-Rel reactivation
    corecore