3,049 research outputs found

    Low-Mass Binary Induced Outflows from Asymptotic Giant Branch Stars

    Get PDF
    A significant fraction of planetary nebulae (PNe) and proto-planetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however recent evidence suggests that many observed PNe harbor binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass (< 0.3 M_sun) companions (planets, brown dwarfs and low-mass main sequence stars) embedded into the envelope of a 3.0 M_sun star during three epochs of its evolution (Red Giant Branch, Asymptotic Giant Branch (AGB), interpulse AGB). We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc driven jet. We study how these features depend on the secondary's mass and discuss observational consequences.Comment: 24 pages, 6 figures, submitted to MNRA

    Planetesimal growth in turbulent discs before the onset of gravitational instability

    Full text link
    It is difficult to imagine a planet formation model that does not at some stage include a gravitationally unstable disc. Initially unstable gas-dust discs may form planets directly, but the high surface density required has motivated the alternative that gravitational instability occurs in a dust sub-layer only after grains have grown large enough by electrostatic sticking. Although such growth up to the instability stage is efficient for laminar discs, concern has mounted as to whether realistic disc turbulence catastrophically increases the settling time, thereby requiring additional processes to facilitate planet formation on the needed time scales. To evaluate this concern, we develop a model for grain growth that accounts for the influence of turbulence on the collisional velocity of grains and on the scale height of the dust layer. The relative effect on these quantities depends on the grain size. The model produces a disc-radius dependent time scale to reach a gravitationally unstable phase of planet formation. For a range of dust sticking and disc parameters, we find that for viscosity parameters α103\alpha \le 10^{-3}, this time scale is short enough over a significant range in radii RR that turbulence does not catastrophically slow the early phases of planet formation, even in the absence of agglomeration enhancement agents like vortices.Comment: Submitted to New Astronom

    Simulated emergence of cyclic sexual-asexual reproduction

    Full text link
    Motivated by the cyclic pattern of reproductive regimes observed in some species of green flies (``{\it aphids}''), we simulate the evolution of a population enduring harsh seasonal conditions for survival. The reproductive regime of each female is also seasonal in principle and genetically acquired, and can mutate for each newborn with some small probability. The results show a sharp transition at a critical value of the survival probability in the winter, between a reproductive regime in the fall that is predominantly sexual, for low values of this probability, or asexual, for high values.Comment: 9 pages, 4 figures, requires RevTe

    Magnetic helicity in primordial and dynamo scenarios of galaxies

    Full text link
    Some common properties of helical magnetic fields in decaying and driven turbulence are discussed. These include mainly the inverse cascade that produces fields on progressively larger scales. Magnetic helicity also restricts the evolution of the large scale field: the field decays less rapidly than a non-helical field, but it also saturates more slowly, i.e. on a resistive time scale if there are no magnetic helicity fluxes. The former effect is utilized in primordial field scenarios, while the latter is important for successfully explaining astrophysical dynamos that saturate faster than resistively. Dynamo action is argued to be important not only in the galactic dynamo, but also in accretion discs in active galactic nuclei and around protostars, both of which contribute to producing a strong enough seed magnetic field. Although primordial magnetic fields may be too weak to compete with these astrophysical mechanisms, such fields could perhaps still be important in producing polarization effects in the cosmic background radiation.Comment: 8 pages, 5 figures, talk given in Bologna, August 2006, proceedings of "The Origin and Evolution of Cosmic Magnetism", Astron. Nachr. (in press

    Low-Frequency Oscillations in Global Simulations of Black Hole Accretion

    Full text link
    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles had been seen previously in local shearing box simulations, but we discuss their evolution over 1,500 inner disk orbits of a global pi/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are ten to twenty times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrow-band frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with RMS amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.Comment: Version accepted to The Astrophysical Journal, 8 pages, 7 figure

    Analysis of the distribution of HII regions in external galaxies. IV The new galaxy sample. Position and Inclination angles

    Get PDF
    We have compiled a new sample of galaxies with published catalogs of HII region coordinates. This sample, together with the former catalog of Garcia-Gomez and Athanassoula (1991) will form the basis for subsequent studies of the spiral structure in disc galaxies. In this paper we address the problem of the deprojection of the galaxy images. For this purpose we use two deprojection methods based on the HII region distribution and compare the results with the values found in the literature using other deprojection methods. Taking into account the results of all the methods, we propose optimum values for the position and inclination angles of all the galaxies in our sample.Comment: TeX file with 16 postscript figure

    Disordered Correlated Kondo-lattice model

    Full text link
    We propose a self-consistent approximate solution of the disordered Kondo-lattice model (KLM) to get the interconnected electronic and magnetic properties of 'local-moment' systems like diluted ferromagnetic semiconductors. Aiming at (A1xMx)(A_{1-x}M_x) compounds, where magnetic (M) and non-magnetic (A) atoms distributed randomly over a crystal lattice, we present a theory which treats the subsystems of itinerant charge carriers and localized magnetic moments in a homologous manner. The coupling between the localized moments due to the itinerant electrons (holes) is treated by a modified RKKY-theory which maps the KLM onto an effective Heisenberg model. The exchange integrals turn out to be functionals of the electronic selfenergy guaranteeing selfconsistency of our theory. The disordered electronic and magnetic moment systems are both treated by CPA-type methods. We discuss in detail the dependencies of the key-terms such as the long range and oscillating effectice exchange integrals, 'the local-moment' magnetization, the electron spin polarization, the Curie temperature as well as the electronic and magnonic quasiparticle densities of states on the concentration xx of magnetic ions, the carrier concentration nn, the exchange coupling JJ, and the temperature. The shape and the effective range of the exchange integrals turn out to be strongly xx-dependent. The disorder causes anomalies in the spin spectrum especially in the low-dilution regime, which are not observed in the mean field approximation.Comment: Accepted by JMM
    corecore