263 research outputs found

    Formation of Liesegang patterns: Simulations using a kinetic Ising model

    Full text link
    A kinetic Ising model description of Liesegang phenomena is studied using Monte Carlo simulations. The model takes into account thermal fluctuations, contains noise in the chemical reactions, and its control parameters are experimentally accessible. We find that noisy, irregular precipitation takes place in dimension d=2 while, depending on the values of the control parameters, either irregular patterns or precipitation bands satisfying the regular spacing law emerge in d=3.Comment: 7 pages, 8 ps figures, RevTe

    Effects of confinement on pattern formation in two dimensional systems with competing interactions

    Get PDF
    Template-assisted pattern formation in monolayers of particles with competing short-range attraction and long-range repulsion interactions (SALR) is studied by Monte Carlo simulations in a simple generic model [N. G. Almarza et al., J. Chem. Phys., 2014, 140, 164708]. We focus on densities corresponding to formation of parallel stripes of particles and on monolayers laterally confined between straight parallel walls. We analyze both the morphology of the developed structures and the thermodynamic functions for broad ranges of temperature T and the separation L between the walls. At low temperature stripes parallel to the boundaries appear, with some corrugation when the distance between the walls does not match the bulk periodicity of the striped structure. The stripes integrity, however, is rarely broken for any L. This structural order is lost at T = T(L) depending on L according to a Kelvin-like equation. Above the Kelvin temperature T(L) many topological defects such as breaking or branching of the stripes appear, but a certain anisotropy in the orientation of the stripes persists. Finally, at high temperature and away from the walls, the system behaves as an isotropic fluid of elongated clusters of various lengths and with various numbers of branches. For L optimal for the stripe pattern the heat capacity as a function of temperature takes the maximum at T = T(L).Peer Reviewe
    corecore