347 research outputs found

    Unraveling the nature of carrier mediated ferromagnetism in diluted magnetic semiconductors

    Get PDF
    After more than a decade of intensive research in the field of diluted magnetic semiconductors (DMS), the nature and origin of ferromagnetism, especially in III-V compounds is still controversial. Many questions and open issues are under intensive debates. Why after so many years of investigations Mn doped GaAs remains the candidate with the highest Curie temperature among the broad family of III-V materials doped with transition metal (TM) impurities ? How can one understand that these temperatures are almost two orders of magnitude larger than that of hole doped (Zn,Mn)Te or (Cd,Mn)Se? Is there any intrinsic limitation or is there any hope to reach in the dilute regime room temperature ferromagnetism? How can one explain the proximity of (Ga,Mn)As to the metal-insulator transition and the change from Ruderman-Kittel-Kasuya-Yosida (RKKY) couplings in II-VI compounds to double exchange type in (Ga,Mn)N? In spite of the great success of density functional theory based studies to provide accurately the critical temperatures in various compounds, till very lately a theory that provides a coherent picture and understanding of the underlying physics was still missing. Recently, within a minimal model it has been possible to show that among the physical parameters, the key one is the position of the TM acceptor level. By tuning the value of that parameter, one is able to explain quantitatively both magnetic and transport properties in a broad family of DMS. We will see that this minimal model explains in particular the RKKY nature of the exchange in (Zn,Mn)Te/(Cd,Mn)Te and the double exchange type in (Ga,Mn)N and simultaneously the reason why (Ga,Mn)As exhibits the highest critical temperature among both II-VI and III-V DMS.Comment: 6 figures. To appear in Comptes Rendus de l'Acad\'emie des Sciences (2015

    Optical conductivity of Mn doped GaAs

    Full text link
    We study the optical conductivity in the III-V diluted magnetic semiconductor GaMnAs and compare our calculations to available experimental data. Our model study is able to reproduce both qualitatively and quantitatively the observed measurements. We show that compensation (low carrier density) leads, in agreement to the observed measurements to a red shift of the broad peak located at approximately 200 meV for the optimally annealed sample. The non perturbative treatment appears to be essential, otherwise a blueshift and an incorrect amplitude would be obtained. By calculating the Drude weight (order parameter) we establish the metal-insulator phase diagram. We indeed find that Mn doped GaAs is close to the metal-insulator transition and that for 5% and 7% doped samples, 20% of the carriers only are delocalized. We have found that the optical mass is approximately 2 me_{e}. We have also interesting results for overdoped samples which could be experimentally realized by Zn codoping.Comment: the manuscript has been extended, new figures are include

    Why RKKY exchange integrals are inappropriate to describe ferromagnetism in diluted magnetic semiconductors

    Full text link
    We calculate Curie temperatures and study the stability of ferromagnetism in diluted magnetic materials, taking as a model for the exchange between magnetic impurities a damped Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and a shor t range term representing the effects of superexchange. To properly include effects of spin and thermal fluctuations as well as geometric disorder, we solve the effective Heisenberg Hamiltonian by means of a recently developed semi-analytical approach. This approach, ``self-consistent local Random Phase Approximation (SC-L RPA)'', is explained. We show that previous mean-field treatments, which have been widely used in the literature, largely overestimate both the Curie temperatures and the stability of ferromagnetism as a function of carrier density. The discr epancy when compared to the current approach was that effects of frustration in RKKY oscillations had been strongly underestimated by such simple mea n-field theories. We argue that the use, as is frequent, of a weakly-disordered RKKY exchange to model ferromagnetism in diluted III-V systems is inconsistent with the observation of ferromagnetism over a wide region of itinerant carrier densities. This may be puzzling when compared to the apparent success of calculations based on {\it ab-initio} estimates of the coupling; we propose a resolution to this issue by taking RKKY-like interactions between resonant states close to the Fermi level.Comment: Accepted for publication in Physical Review B. 22 pages, 7 figure

    Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga1−xMnxAsGa_{1-x}Mn_{x}As

    Full text link
    We propose a theory which allow to calculate the magnetic excitation spectrum in diluted ferromagnetic systems. The approach is rather general and based on the Self-Consistent local Random Phase Approximation in which disorder (dilution) and thermal fluctuations are properly treated. To illustrate its reliability and accuracy we calculate the magnetic excitation in the diluted III-V magnetic semiconductor Ga1−xMnxAsGa_{1-x}Mn_{x}As. It is shown that dilution has a drastic effect on the excitation spectrum, indeed well defined magnon excitations exist only in a small region of the Brillouin zone centered around the Γ\Gamma point. We also calculate the spin stiffness in optimally annealed sample as a function of Mn2+Mn^{2+} concentration. A comparison to available measurements is done. We find a very good agreement for both the Curie temperature and the spin stiffness measured in well annealed samples and provide a plausible explanation for the very small values measured in as grown samples.Comment: The manuscript has been modified, 4 figures are included. Accepted for publication in Eur. Phys. Let

    Non-perturbative JpdJ_{pd} model and ferromagnetism in dilute magnets

    Full text link
    We calculate magnetic couplings in the JpdJ_{pd} model for dilute magnets, in order both to identify the relevant parameters which control ferromagnetism and also to bridge the gap between first principle calculations and model approaches. The magnetic exchange interactions are calculated non-perturbatively and disorder in the configuration of impurities is treated exacly, allowing us to test the validity of effective medium theories. Results differ qualitatively from those of weak coupling. In contrast to mean field theory, increasing JpdJ_{pd} may not favor high Curie temperatures: TCT_C scales primarily with the bandwidth. High temperature ferromagnetism at small dilutions is associated with resonant structure in the p-band. Comparison to diluted magnetic semiconductors indicate that Ga(Mn)As has such a resonant structure and thus this material is already close to optimality.Comment: 4 pages, 4 Figure

    Spontaneous magnetization in presence of nanoscale inhomogeneities in diluted magnetic systems

    Full text link
    The presence of nanoscale inhomogeneities has been experimentally evidenced in several diluted magnetic systems, which in turn often leads to interesting physical phenomena. However, a proper theoretical understanding of the underlying physics is lacking in most of the cases. Here we present a detailed and comprehensive theoretical study of the effects of nanoscale inhomogeneities on the temperature dependent spontaneous magnetization in diluted magnetic systems, which is found to exhibit an unusual and unconventional behavior. The effects of impurity clustering on the magnetization response have hardly been studied until now. We show that nanosized clusters of magnetic impurities can lead to drastic effects on the magnetization compared to that of homogeneously diluted compounds. The anomalous nature of the magnetization curves strongly depends on the relative concentration of the inhomogeneities as well as the effective range of the exchange interactions. In addition we also provide a systematic discussion of the nature of the distributions of the local magnetization.Comment: 18 pages, 9 figures, 4 new references added and Text modified to match the published versio

    Nanoscale inhomogeneities: A new path toward high Curie temperature ferromagnetism in diluted materials

    Full text link
    Room temperature ferromagnetism has been one of the most sought after topics in today's emerging field of spintronics. It is strongly believed that defect- and inhomogeneity- free sample growth should be the optimal route for achieving room-temperature ferromagnetism and huge efforts are made in order to grow samples as "clean" as possible. However, until now, in the dilute regime it has been difficult to obtain Curie temperatures larger than that measured in well annealed samples of (Ga,Mn)As (∼\sim190 K for 12% doping). In the present work, we propose an innovative path to room-temperature ferromagnetism in diluted magnetic semiconductors. We theoretically show that even a very small concentration of nanoscale inhomogeneities can lead to a tremendous boost of the critical temperatures: up to a 1600% increase compared to the homogeneous case. In addition to a very detailed analysis, we also give a plausible explanation for the wide variation of the critical temperatures observed in (Ga,Mn)N and provide a better understanding of the likely origin of very high Curie temperatures measured occasionally in some cases. The colossal increase of the ordering temperatures by nanoscale cluster inclusions should open up a new direction toward the synthesis of materials relevant for spintronic functionalities.Comment: 16 pages, 4 figures, New references added and Text revised to match the accepted versio
    • …
    corecore