2,002 research outputs found
Obesity-induced changes in lipid mediators persist after weight loss.
BackgroundObesity induces significant changes in lipid mediators, however, the extent to which these changes persist after weight loss has not been investigated.Subjects/methodsWe fed C57BL6 mice a high-fat diet to generate obesity and then switched the diet to a lower-fat diet to induce weight loss. We performed a comprehensive metabolic profiling of lipid mediators including oxylipins, endocannabinoids, sphingosines and ceramides in key metabolic tissues (including adipose, liver, muscle and hypothalamus) and plasma.ResultsWe found that changes induced by obesity were largely reversible in most metabolic tissues but the adipose tissue retained a persistent obese metabolic signature. Prostaglandin signaling was perturbed in the obese state and lasting increases in PGD2, and downstream metabolites 15-deoxy PGJ2 and delta-12-PGJ2 were observed after weight loss. Furthermore expression of the enzyme responsible for PGD2 synthesis (hematopoietic prostaglandin D synthase, HPGDS) was increased in obese adipose tissues and remained high after weight loss. We found that inhibition of HPGDS over the course of 5 days resulted in decreased food intake in mice. Increased HPGDS expression was also observed in human adipose tissues obtained from obese compared with lean individuals. We then measured circulating levels of PGD2 in obese patients before and after weight loss and found that while elevated relative to lean subjects, levels of this metabolite did not decrease after significant weight loss.ConclusionsThese results suggest that lasting changes in lipid mediators induced by obesity, still present after weight loss, may play a role in the biological drive to regain weight
Recommended from our members
Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991
This study examines the influence of photochemical processes on ozone distributions in the western North Pacific. The analysis is based on data generated during NASA's western Pacific Exploratory Mission (PEM-West A) during the fall of 1991. Ozone trends were best described in terms of two geographical domains: the western North Pacific rim (WNPR) and the western tropical North Pacific (WTNP). For both geographical regions, ozone photochemical destruction, D(O3), decreased more rapidly with altitude than did photochemical formation, F(O3). Thus the ozone tendency, P(O3), was typically found to be negative for z <6 km and positive for z > 6-8 km. For nearly all altitudes and latitudes, observed nonmethane hydrocarbon (NMHC) levels were shown to be of minor importance as ozone precursor species. Air parcel types producing the largest positive values of P(O3) included fresh continental boundary layer (BL) air and high-altitude (z > 7 km) parcels influenced by deep convection/lightning. Significant negative P(O3) values were found when encountering clean marine BL air or relatively clean lower free-tropospheric air. Photochemical destruction and formation fluxes for the Pacific rim region were found to exceed average values cited for marine dry deposition and stratospheric injection in the northern hemisphere by nearly a factor of 6. This region was also found to be in near balance with respect to column-integrated O3 photochemical production and destruction. By contrast, for the tropical regime column-integrated O3 showed photochemical destruction exceeding production by nearly 80%. Both transport of O3 rich midlatitude air into the tropics as well as very high-altitude (10-17 km) photochemical O3 production were proposed as possible additional sources that might explain this estimated deficit. Results from this study further suggest that during the fall time period, deep convection over Asia and Malaysia/Indonesia provided a significant source of high-altitude NOx to the western Pacific. Given that the high-altitude NOx lifetime is estimated at between 3 and 9 days, one would predict that this source added significantly to high altitude photochemical O3 formation over large areas of the western Pacific. When viewed in terms of strong seasonal westerly flow, its influence would potentially span a large part of the Pacific. Copyright 1996 by the American Geophysical Union
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations
Abstract
Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline
Dietary intakes of flavan-3-ols and cardiovascular health: a field synopsis using evidence mapping of randomized trials and prospective cohort studies
Background: There is considerable interest in the impact of increased flavan-3-ol intake on cardiovascular disease (CVD) and diabetes outcomes. Through evidence mapping, we determined the extent of the evidence base to initiate a future systematic review investigating the impact of flavan-3-ol intake on CVD and diabetes outcomes. Methods: We developed a research protocol, convened a technical expert panel (TEP) to refine the specific research questions, conducted a systematic search in multiple databases, double-screened abstracts and full-text articles, performed data extractions, and synthesized the data. We focused on randomized controlled trials (RCTs) and prospective cohort studies which assessed intakes of flavan-3-ol from foods, beverages, and supplement/extract sources on biomarkers and clinical outcomes of CVD and diabetes. Results: Of 257 eligible articles, 223 and 34 publications contributed to 226 RCTs and 39 prospective cohort studies, respectively. In RCTs, the most frequently studied interventions were cocoa-based products (23.2%); berries (16.1%); tea in the form of green tea (13.9%), black tea (7.2%), or unspecified tea (3.6%); and red wine (11.2%). Mean total flavan-3-ol intake was highest in the cocoa-based trials (618.7 mg/day) and lowest in the interventions feeding red wine (123.7 mg/day). The most frequently reported outcomes were intermediate biomarkers including serum lipid levels (63.4%), blood glucose (50.9%), blood pressure (50.8%), flow-mediated dilation (21.9%), and high-sensitivity C-reactive protein (21.9%). The included 34 prospective cohort studies predominantly examined exposures to flavan-3-ols (26%), cocoa-based products (23.2%), berries (16.1%), and green tea (13.9%) and CVD incidence and mortality. Conclusion: Through a systematic, evidence-based approach, evidence mapping on flavan-3-ol intake and CVD outcomes demonstrated sufficient data relating to flavan-3ol intake and biomarkers and clinical outcomes of CVD and diabetes. The current evidence base highlights the distribution of available data which both support the development of a future systematic review and identified the research need for future long-term RCTs
Inertio-elastic focusing of bioparticles in microchannels at high throughput
Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
A perspective on radical transformations to sustainability: resistances, movements and alternatives
A transformation to sustainability calls for radical and systemic societal shifts. Yet what this entails in practice and who the agents of this radical transformation are require further elaboration. This article recenters the role of environmental justice movements in transformations, arguing that the systemic, multi-dimensional and intersectional approach inherent in EJ activism is uniquely placed to contribute to the realization of equitable sustainable futures. Based on a perspective of conflict as productive, and a “conflict transformation” approach that can address the root issues of ecological conflicts and promote the emergence of alternatives, we lay out a conceptual framework for understanding transformations through a power analysis that aims to confront and subvert hegemonic power relations; that is, multi-dimensional and intersectional; balancing ecological concerns with social, economic, cultural and democratic spheres; and is multi-scalar, and mindful of impacts across place and space. Such a framework can help analyze and recognize the contribution of grassroots EJ movements to societal transformations to sustainability and support and aid radical transformation processes. While transitions literature tends to focus on artifacts and technologies, we suggest that a resistance-centred perspective focuses on the creation of new subjectivities, power relations, values and institutions. This recenters the agency of those who are engaged in the creation and recuperation of ecological and new ways of being in the world in the needed transformation
- …
