1,074 research outputs found

    Complex network view of evolving manifolds

    Get PDF
    We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite-dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h-holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.Comment: 14 pages, 15 figure

    Broiler Litter Reutilization Applying Different Composting Concepts

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Broiler litter reutilization consists in using the same bedding material to cover the house floor for several broiler flocks. This requires the litter to be treated in order to reduce the amount of microorganisms, according to international recommendations. The aim of this study was to evaluate two methods of broiler litter fermentation based on composting concepts and their effect on litter and the air quality during fermentation in small-scale broiler houses. The experiment was carried out in the Environmental Laboratory I of the School of Agricultural Engineering of the State University of Campinas, utilizing six small-scale houses. Litter from the same grow-out (one, two or three) was distributed in two experimental houses, where it was either piled or spread. Before beginning the treatment, six litter samples were collected from each house and analyzed for total nitrogen content, humidity, pH and microbial counts. Litter humidity, gas emission (NH3 and CO2), environmental temperature, air relative humidity, and air velocity were determined during and after composting. Bacterial population, especially of Salmonella sp, was higher when the litter was piled compared with spread litter. However, fungi population showed a different pattern, decreasing after composting. Nevertheless, both treatments were not able to significantly reduce bacterial counts, specifically Salmonella sp, when the population before and after fermentation were compared.143227232Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment

    Get PDF
    The megadiverse Neotropical fish fauna lacks a comprehensive and reliable DNA reference database, which hampers precise species identification and DNA based biodiversity assessment in the region. Here, we developed a mitochondrial 12S ribosomal DNA reference database for 67 fish species, representing 54 genera, 25 families, and six major Neotropical orders. We aimed to develop mini-barcode markers (i.e. amplicons with less than 200 bp) suitable for DNA metabarcoding by evaluating the taxonomic resolution of full-length and mini-barcodes and to determine a threshold value for fish species delimitation using 12S. Evaluation of the target amplicons demonstrated that both full-length library (565 bp) and mini-barcodes (193 bp) contain enough taxonomic resolution to differentiate all 67 fish species. For species delimitation, interspecific genetic distance threshold values of 0.4% and 0.55% were defined using full-length and mini-barcodes, respectively. A custom reference database and specific mini-barcode markers are important assets for ecoregion scale DNA based biodiversity assessments (such as environmental DNA) that can help with the complex task of conserving the megadiverse Neotropical ichthyofauna

    Dynamics of early establishment of SARS-CoV-2 VOC Omicron lineages in Minas Gerais, Brazil

    Get PDF
    Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
    corecore