58 research outputs found

    Identification of elderly fallers by muscle strength measures

    Get PDF
    For efficient prevention of falls among older adults, individuals at a high risk of falling need to be identified. In this study, we searched for muscle strength measures that best identified those individuals who would fall after a gait perturbation and those who recovered their balance. Seventeen healthy older adults performed a range of muscle strength tests. We measured maximum and rate of development of ankle plantar flexion moment, knee extension moment and whole leg push-off force, as well as maximum jump height and hand grip strength. Subsequently, their capacity to regain balance after tripping over an obstacle was determined experimentally. Seven of the participants were classified as fallers based on the tripping outcome. Maximum isometric push-off force in a leg press apparatus was the best measure to identify the fallers, as cross-validation of a discriminant model with this variable resulted in the best classification (86% sensitivity and 90% specificity). Jump height and hand grip strength were strongly correlated to leg press force (r = 0.82 and 0.59, respectively) and can also be used to identify fallers, although with slightly lower specificity. These results indicate that whole leg extension strength is associated with the ability to prevent a fall after a gait perturbation and might be used to identify the elderly at risk of falling

    Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts

    Get PDF
    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role

    Force-Controlled Balance Perturbations Associated with Falls in Older People: A Prospective Cohort Study

    Get PDF
    Balance recovery from an unpredictable postural perturbation can be a challenging task for many older people and poor recovery could contribute to their risk of falls. This study examined associations between responses to unpredictable perturbations and fall risk in older people. 242 older adults (80.064.4 years) underwent assessments of stepping responses to multi-directional force-controlled waist-pull perturbations. Participants returned monthly falls calendars for the subsequent 12 months. Future falls were associated with lower force thresholds for stepping in the posterior and lateral but not anterior directions. Those with lower posterior force thresholds for stepping were 68% more likely to fall at home than those with higher force thresholds for stepping. These results suggest that amount of force that can be withstood following an unpredictable balance perturbation predicts future falls in community-dwelling older adults. Perturbations in the posterior direction best discriminated between future fallers and non-fallers

    Age-related changes in rat bone-marrow mesenchymal stem cell plasticity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of adult stem cells is known to be compromised as a function of age. This therefore raises questions about the effectiveness of autologous cell therapy in elderly patients.</p> <p>Results</p> <p>We demonstrated that the expression profile of stemness markers was altered in BM-MSCs derived from old rats. BM-MSCs from young rats (4 months) expressed Oct-4, Sox-2 and NANOG, but we failed to detect Sox-2 and NANOG in BM-MSCs from older animals (15 months). Chondrogenic, osteogenic and adipogenic potential is compromised in old BM-MSCs. Stimulation with a cocktail mixture of bone morphogenetic protein (BMP-2), fibroblast growth factor (FGF-2) and insulin-like growth factor (IGF-1) induced cardiomyogenesis in young BM-MSCs but not old BM-MSCs. Significant differences in the expression of gap junction protein connexin-43 were observed between young and old BM-MSCs. Young and old BM-MSCs fused with neonatal ventricular cardiomyocytes in co-culture and expressed key cardiac transcription factors and structural proteins. Cells from old animals expressed significantly lower levels of VEGF, IGF, EGF, and G-CSF. Significantly higher levels of DNA double strand break marker γ-H2AX and diminished levels of telomerase activity were observed in old BM-MSCs.</p> <p>Conclusion</p> <p>The results suggest age related differences in the differentiation capacity of BM-MSCs. These changes may affect the efficacy of BM-MSCs for use in stem cell therapy.</p

    Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls in frail elderly are a common problem with a rising incidence. Gait and postural instability are major risk factors for falling, particularly in geriatric patients. As walking requires attention, cognitive impairments are likely to contribute to an increased fall risk. An objective quantification of gait and balance ability is required to identify persons with a high tendency to fall. Recent studies have shown that stride variability is increased in elderly and under dual task condition and might be more sensitive to detect fall risk than walking speed. In the present study we complemented stride related measures with measures that quantify trunk movement patterns as indicators of dynamic balance ability during walking. The aim of the study was to quantify the effect of impaired cognition and dual tasking on gait variability and stability in geriatric patients.</p> <p>Methods</p> <p>Thirteen elderly with dementia (mean age: 82.6 ± 4.3 years) and thirteen without dementia (79.4 ± 5.55) recruited from a geriatric day clinic, walked at self-selected speed with and without performing a verbal dual task. The Mini Mental State Examination and the Seven Minute Screen were administered. Trunk accelerations were measured with an accelerometer. In addition to walking speed, mean, and variability of stride times, gait stability was quantified using stochastic dynamical measures, namely regularity (sample entropy, long range correlations) and local stability exponents of trunk accelerations.</p> <p>Results</p> <p>Dual tasking significantly (p < 0.05) decreased walking speed, while stride time variability increased, and stability and regularity of lateral trunk accelerations decreased. Cognitively impaired elderly showed significantly (p < 0.05) more changes in gait variability than cognitive intact elderly. Differences in dynamic parameters between groups were more discerned under dual task conditions.</p> <p>Conclusions</p> <p>The observed trunk adaptations were a consistent instability factor. These results support the concept that changes in cognitive functions contribute to changes in the variability and stability of the gait pattern. Walking under dual task conditions and quantifying gait using dynamical parameters can improve detecting walking disorders and might help to identify those elderly who are able to adapt walking ability and those who are not and thus are at greater risk for falling.</p

    Gait in Pregnancy-related Pelvic girdle Pain: amplitudes, timing, and coordination of horizontal trunk rotations

    Get PDF
    Walking is impaired in Pregnancy-related Pelvic girdle Pain (PPP). Walking velocity is reduced, and in postpartum PPP relative phase between horizontal pelvis and thorax rotations was found to be lower at higher velocities, and rotational amplitudes tended to be larger. While attempting to confirm these findings for PPP during pregnancy, we wanted to identify underlying mechanisms. We compared gait kinematics of 12 healthy pregnant women and 12 pregnant women with PPP, focusing on the amplitudes of transverse segmental rotations, the timing and relative phase of these rotations, and the amplitude of spinal rotations. In PPP during pregnancy walking velocity was lower than in controls, and negatively correlated with fear of movement. While patients’ rotational amplitudes were larger, with large inter-individual differences, spinal rotations did not differ between groups. In the patients, peak thorax rotation occurred earlier in the stride cycle at higher velocities, and relative phase was lower. The earlier results on postpartum PPP were confirmed for PPP during pregnancy. Spinal rotations remained unaffected, while at higher velocities the peak of thorax rotations occurred earlier in the stride cycle. The latter change may serve to avoid excessive spine rotations caused by the larger segmental rotations

    Functional gait rehabilitation in elderly people following a fall-related hip fracture using a treadmill with visual context: design of a randomized controlled trial

    Get PDF
    Background: Walking requires gait adjustments in order to walk safely in continually changing environments. Gait adaptability is reduced in older adults, and (near) falls, fall-related hip fractures and fear of falling are common in this population. Most falls occur due to inaccurate foot placement relative to environmental hazards, such as obstacles. The C-Mill is an innovative, instrumented treadmill on which visual context (e. g., obstacles) is projected. The C-Mill is well suited to train foot positioning relative to environmental properties while concurrently utilizing the high-intensity practice benefits associated with conventional treadmill training. The present protocol was designed to examine the efficacy of C-Mill gait adaptability treadmill training for improving walking ability and reducing fall incidence and fear of falling relative to conventional treadmill training and usual care. We hypothesize that C-Mill gait adaptability treadmill training and conventional treadmill training result in better walking ability than usual care due to the enhanced training intensity, with superior effects for C-Mill gait adaptability treadmill training on gait adaptability aspects of walking given the concurrent focus on practicing step adjustments. Methods/design: The protocol describes a parallel group, single-blind, superiority randomized controlled trial with pre-tests, post-tests, retention-tests and follow-up. Hundred-twenty-six older adults with a recent fall-related hip fracture will be recruited from inpatient rehabilitation care and allocated to six weeks of C-Mill gait adaptability treadmill training (high-intensity, adaptive stepping), conventional treadmill training (high-intensity, repetitive stepping) or usual care physical therapy using block randomization, with allocation concealment by opaque sequentially numbered envelopes. Only data collectors are blind to group allocation. Study parameters related to walking ability will be assessed as primary outcome pre-training, post-training, after 4 weeks retention and 12 months follow-up. Secondary study parameters are measures related to fall incidence, fear of falling and general health. Discussion: The study will shed light on the relative importance of adaptive versus repetitive stepping and practice intensity for effective intervention programs directed at improving walking ability and reducing fall risk and fear of falling in older adults with a recent fall-related hip fracture, which may help reduce future fall-related health-care costs

    The superior effect of nature based solutions in land management for enhancing ecosystem services

    Get PDF
    The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In landmanagement NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we showthe potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aimto enhance the soil health and soil functions throughwhich local eco-systemserviceswill bemaintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soilmoisture and reducing droughts and soil erosionwe can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations

    Behavioural activation by mental health nurses for late-life depression in primary care: a randomized controlled trial

    Get PDF
    Background: Depressive symptoms are common in older adults. The effectiveness of pharmacological treatments and the availability of psychological treatments in primary care are limited. A behavioural approach to depression treatment might be beneficial to many older adults but such care is still largely unavailable. Behavioural Activation (BA) protocols are less complicated and more easy to train than other psychological therapies, making them very suitable for delivery by less specialised therapists. The recent introduction of the mental health nurse in primary care centres in the Netherlands has created major opportunities for improving the accessibility of psychological treatments for late-life depression in primary care. BA may thus address the needs of older patients while improving treatment outcome and lowering costs.The primary objective of this study is to compare the effectiveness and cost-effectiveness of BA in comparison with treatment as usual (TAU) for late-life depression in Dutch primary care. A secondary goal is to explore several potential mechanisms of change, as well as predictors and moderators of treatment outcome of BA for late-life depression. Methods/design: Cluster-randomised controlled multicentre trial with two parallel groups: a) behavioural activation, and b) treatment as usual, conducted in primary care centres with a follow-up of 52 weeks. The main inclusion criterion is a PHQ-9 score > 9. Patients are excluded from the trial in case of severe mental illness that requires specialized treatment, high suicide risk, drug and/or alcohol abuse, prior psychotherapy, change in dosage or type of prescribed antidepressants in the previous 12 weeks, or moderate to severe cognitive impairment. The intervention consists of 8 weekly 30-min BA sessions delivered by a trained mental health nurse. Discussion: We expect BA to be an effective and cost-effective treatment for late-life depression compared to TAU. BA delivered by mental health nurses could increase the availability and accessibility of non-pharmacological treatments for late-life depression in primary care. Trial registration: This study is retrospectively registered in the Dutch Clinical Trial Register NTR6013on August 25th 2016. © 2017 The Author(s)

    Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage

    Get PDF
    The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1
    corecore