4,189 research outputs found
Korea-United States Air Quality (KORUS-AQ) Campaign
The Korea-United States Air Quality (KORUS-AQ) campaign was an international cooperative field study based out of Osan Air Base, Songtan, South Korea (about 60 kilometers south of Seoul) in April-June 2016. A comprehensive suite of instruments capable of measuring atmospheric composition was deployed around the Korean peninsula on aircrafts, ships, and at ground sites in order to characterize local and transboundary pollution. The NASA Goddard Earth Observing System, version 5 (GEOS-5) forecast model was used for near real time meteorological and aerosol forecasting and flight planning during the KORUS-AQ campaign. Evaluation of GEOS-5 against observations from the campaign will help to identify inaccuracies in the models physical and chemical processes in this region within East Asia and lead to further developments of the modeling system
Determination of the uptake and translocation of nitrogen applied at different growth stages of a melon crop (Cucumis melo L.) using 15N isotope.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest
Models for Metal Hydride Particle Shape, Packing, and Heat Transfer
A multiphysics modeling approach for heat conduction in metal hydride powders
is presented, including particle shape distribution, size distribution,
granular packing structure, and effective thermal conductivity. A statistical
geometric model is presented that replicates features of particle size and
shape distributions observed experimentally that result from cyclic hydride
decreptitation. The quasi-static dense packing of a sample set of these
particles is simulated via energy-based structural optimization methods. These
particles jam (i.e., solidify) at a density (solid volume fraction) of
0.665+/-0.015 - higher than prior experimental estimates. Effective thermal
conductivity of the jammed system is simulated and found to follow the behavior
predicted by granular effective medium theory. Finally, a theory is presented
that links the properties of bi-porous cohesive powders to the present systems
based on recent experimental observations of jammed packings of fine powder.
This theory produces quantitative experimental agreement with metal hydride
powders of various compositions.Comment: 12 pages, 12 figures, 2 table
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Effect of the phosphate fertilizer with filter cake on soil microbial activity and phosphorous uptake in sugar cane
El objetivo del trabajo fue evaluar el efecto de diferentes dosis de fertilizante fosfatado
con la adición de cachaza sobre la actividad microbiana del suelo, y el contenido de
fósforo en el suelo y en plantas de caña de azúcar. El experimento se condujo en condi-
ciones de invernadero en Jaboticabal Brasil en 2013, usándose plántulas de caña de
azúcar (variedad "CTC 05"). Las unidades experimentales estuvieron constituidas por
macetas cargadas con un Hapludox. Se empleó un diseño completamente aleatorizado,
con el arreglo factorial de 5x2 y tres repeticiones. Los tratamientos fueron cinco dosis de
fósforo: 0, 50, 100, 200 y 400 mg dm -3 y dos niveles de cachaza (ausencia y presencia).
Se evaluaron la actividad respiratoria, la fosfatasa ácida y la deshidrogenasa, el carbono
soluble, el pH y el tenor de P en el suelo, así como el P acumulado en las plántulas. Se
encontró interacción entre las dosis de P y la cachaza para todas las variables, excepto
para el pH y el carbono soluble. El fosfato con la adición de cachaza aumentó la actividad
microbiana y el fósforo disponible en el suelo, reflejándose en la mayor acumulación de P en las plantas.The objective of the work was to evaluate the effect of different doses of phosphate
fertilizer with the addition of sugar cane industry filter cake on the soil microbial activity
and soil and plant P concentration in sugar cane. The experiment was carried out in
vegetation house at Jaboticabal, Brazil, in 2013, and the sugar cane seedlings variety
"CTC 05"was used as tests plant. The experimental units were pots containing Hapludox.
A completely randomized design was used, with factorial arrangement of 5x2 and three
repetitions. The treatments were five phosphorus doses: 0, 50, 100, 200 and 400 mg dm -3
and two levels of filter cake (absence and presence). Soil respiration, acid phosphatase
and dehydrogenase activity, soluble carbon, pH value, soil and plant P concentrations.
There was interaction among doses of P and filter cake application for all the variables,
except for the pH. The phosphate with the addition of filter cake application for all the variables, except for the pH. The phosphate with the addition of filter cake increased the microbial activity, the value of the pH and de P concentration in the soil, being reflected in a higher accumulation of P in the seedling.Fil: Saucedo Castillo, Orlando.
Universidad Central "Marta Abreu" de Las Villas (Cuba)Fil: Prado, Renato de Mello.
Universidad Estadual Paulista "Júlio de Mesquita Filho" (Brasil)Fil: Castellanos González, Leónides .
Universidad de Cienfuegos (Cuba)Fil: Ely, Nahas.
Universidad Estadual Paulista "Júlio de Mesquita Filho" (Brasil)Fil: Silva Campos, Cid Naudi.
Universidad Estadual Paulista "Júlio de Mesquita Filho" (Brasil)Fil: Silva, Gilmara Pereira Da.
Universidad Estadual Paulista "Júlio de Mesquita Filho" (Brasil)Fil: Assis, Luis Carlos.
Universidad Estadual Paulista "Júlio de Mesquita Filho" (Brasil
Neuroendocrine-Immune Systems Response to Environmental Stressors in the Cephalopod Octopus vulgaris
Under a continuous changing environment, animals are challenged with stresses and stimuli which demanding adaptation at behavioral and physiological levels. The adaptation strategies are finely regulated by animal nervous, endocrine, and immune systems. Although it's been established by now the usage of integrative approach to the study the endocrine and nervous systems (neuroendocrine), yet our understanding of how they cooperate with the immune system remains far from complete. The possible role that immune system plays as a component of the network has only been recognized recently. Octopus vulgaris is an important member of cephalopods and is considered as a model species, with considerable information about the neuroendocrine and immune systems. In the current review, we anticipate to shed light on the complexity and cross talk among the three systems and how they cooperate in setting physiological response to stresses-stimuli in O. vulgaris as a target species and primary example
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
- …
