227 research outputs found

    Quantum Particles Constrained on Cylindrical Surfaces with Non-constant Diameter

    Full text link
    We present a theoretical formulation of the one-electron problem constrained on the surface of a cylindrical tubule with varying diameter. Because of the cylindrical symmetry, we may reduce the problem to a one-dimensional equation for each angular momentum quantum number mm along the cylindrical axis. The geometrical properties of the surface determine the electronic structures through the geometry dependent term in the equation. Magnetic fields parallel to the axis can readily be incorporated. Our formulation is applied to simple examples such as the catenoid and the sinusoidal tubules. The existence of bound states as well as the band structures, which are induced geometrically, for these surfaces are shown. To show that the electronic structures can be altered significantly by applying a magnetic field, Aharonov-Bohm effects in these examples are demonstrated.Comment: 7 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Thermally Pulsing Asymptotic Giant Branch Star Models and Globular Cluster Planetary Nebulae I: The Model

    Full text link
    Thermally pulsing asymptotic giant branch models of globular cluster stars are calculated using a synthetic model with the goal of reproducing the chemical composition, core masses and other observational parameters of the four known globular cluster planetary nebulae as well as roughly matching the overall cluster properties. The evolution of stars with an enhanced helium abundance (YY) and blue stragglers are modeled. New pre-thermally pulsing asymptotic giant branch mass-losses for red giant branch and early asymptotic giant branch stars are calculated from the Padova stellar evolution models \citep{berta,bertb}. The new mass-losses are calculated to get the relative differences in mass-losses due to enhanced helium abundances. The global properties of the globular cluster planetary nebula are reproduced with these models. The metallicity, mass of the central star, overall metallicities, helium abundance and the nebular mass are matched to the observational values. Globular cluster planetary nebulae JaFu 1 and JaFu 2 are reproduced {\it by assuming progenitor stars} with masses near the typical main sequence turn-offs of globular clusters and with enhanced helium abundances very similar to the enhancements inferred from fitting isochrones to globular cluster colour-magnitude diagrams. The globular cluster PN GJJC-1 can be roughly fit by a progenitor star with very extreme helium enhancement (Y0.40Y\approx0.40) near the turn-off producing a central star with the same mass as inferred by observations and a very low nebular mass. The abundances and core mass of planetary nebula Ps 1 and its central star (K648) are reproduced by a blue straggler model. However, it turned out to be impossible to reproduce its nebular mass and it is concluded some kind of binary scenario may be needed to explain K648.Comment: 14 pages, 8 figures, accepted for publication in MNRA

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    The hrp genes of Pseudomonas cichorii are essential for pathogenicity on eggplant but not on lettuce

    Get PDF
    Pseudomonas cichorii causes necrotic lesions in eggplant and rot in lettuce. Through transposon insertion into P. cichorii strain SPC9018 we produced two mutants, 4-57 and 2-99, that lost virulence on eggplant but not lettuce. Analyses showed that a transposon was inserted into the hrpG gene in 4-57 and the hrcT gene in 2-99. Nucleotide sequences of the hrp genes of SPC9018 are homologous to those of Pseudomonas viridiflava BS group strains. The pathogenicity of 4-57 on eggplant was restored by transformation with an hrpF operon, originating from either SPC9018 or the BS group member P. viridiflava strain 9504 (Pv9504). These data suggested the involvement of hrp genes in the pathogenicity of SPC9018 on eggplant, and functional conservation of hrpF operons between SPC9018 and Pv9504. Both the hrpS mutant and the hrpL mutant were unable to cause necrotic lesions on eggplant leaves but retained their pathogenicity against lettuce. These results suggest that the pathogenicity of P. cichorii is hrp-dependent in eggplant, but not in lettuce

    A case-series study to explore the efficacy of foot orthoses in treating first metatarsophalangeal joint pain

    Get PDF
    Background: First metatarsophalangeal (MTP) joint pain is a common foot complaint which is often considered to be a consequence of altered mechanics. Foot orthoses are often prescribed to reduce 1 stMTP joint pain with the aim of altering dorsiflexion at propulsion. This study explores changes in 1 stMTP joint pain and kinematics following the use of foot orthoses.Methods: The effect of modified, pre-fabricated foot orthoses (X-line ®) were evaluated in thirty-two patients with 1 stMTP joint pain of mechanical origin. The primary outcome was pain measured at baseline and 24 weeks using the pain subscale of the foot function index (FFI). In a small sub-group of patients (n = 9), the relationship between pain and kinematic variables was explored with and without their orthoses, using an electromagnetic motion tracking (EMT) system.Results: A significant reduction in pain was observed between baseline (median = 48 mm) and the 24 week endpoint (median = 14.50 mm, z = -4.88, p < 0.001). In the sub-group analysis, we found no relationship between pain reduction and 1 stMTP joint motion, and no significant differences were found between the 1 stMTP joint maximum dorsiflexion or ankle/subtalar complex maximum eversion, with and without the orthoses.Conclusions: This observational study demonstrated a significant decrease in 1 stMTP joint pain associated with the use of foot orthoses. Change in pain was not shown to be associated with 1 stMTP joint dorsiflexion nor with altered ankle/subtalar complex eversion. Further research into the effect of foot orthoses on foot function is indicated. © 2010 Welsh et al; licensee BioMed Central Ltd

    Evolution of laparoscopic left lateral sectionectomy without the Pringle maneuver: through resection of benign and malignant tumors to living liver donation

    Get PDF
    BACKGROUND: Laparoscopic left lateral sectionectomy (LLS) has gained popularity in its use for benign and malignant tumors. This report describes the evolution of the authors' experience using laparoscopic LLS for different indications including living liver donation. METHODS: Between January 2004 and January 2009, 37 consecutive patients underwent laparoscopic LLS for benign, primary, and metastatic liver diseases, and for one case of living liver donation. Resection of malignant tumors was indicated for 19 (51%) of the 37 patients. RESULTS: All but three patients (deceased due to metastatic cancer disease) are alive and well after a median follow-up period of 20 months (range, 8-46 months). Liver cell adenomas (72%) were the main indication among benign tumors, and colorectal liver metastases (84%) were the first indication of malignancy. One case of live liver donation was performed. Whereas 16 patients (43%) had undergone a previous abdominal surgery, 3 patients (8%) had LLS combined with bowel resection. The median operation time was of 195 min (range, 115-300 min), and the median blood loss was of 50 ml (range, 0-500 ml). Mild to severe steatosis was noted in 7 patients (19%) and aspecific portal inflammation in 11 patients (30%). A median free margin of 5 mm (range, 5-27 mm) was achieved for all cancer patients. The overall recurrence rate for colorectal liver metastases was of 44% (7 patients), but none recurred at the surgical margin. No conversion to laparotomy was recorded, and the overall morbidity rate was 8.1% (1 grade 1 and 2 grade 2 complications). The median hospital stay was 6 days (range, 2-10 days). CONCLUSIONS: Laparoscopic LLS without portal clamping can be performed safely for cases of benign and malignant liver disease with minimal blood loss and overall morbidity, free resection margins, and a favorable outcome. As the ultimate step of the learning curve, laparoscopic LLS could be routinely proposed, potentially increasing the donor pool for living-related liver transplantation

    The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes

    Get PDF
    The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera

    Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter?

    Get PDF
    The genus Pseudomonas has gone through many taxonomic revisions over the past 100 years, going from a very large and diverse group of bacteria to a smaller, more refined and ordered list having specific properties. The relationship of the Pseudomonas genus to Azotobacter vinelandii is examined using three genomic sequence-based methods. First, using 16S rRNA trees, it is shown that A. vinelandii groups within the Pseudomonas close to Pseudomonas aeruginosa. Genomes from other related organisms (Acinetobacter, Psychrobacter, and Cellvibrio) are outside the Pseudomonas cluster. Second, pan genome family trees based on conserved gene families also show A. vinelandii to be more closely related to Pseudomonas than other related organisms. Third, exhaustive BLAST comparisons demonstrate that the fraction of shared genes between A. vinelandii and Pseudomonas genomes is similar to that of Pseudomonas species with each other. The results of these different methods point to a high similarity between A. vinelandii and the Pseudomonas genus, suggesting that Azotobacter might actually be a Pseudomonas

    The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity

    Get PDF
    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain
    corecore