90 research outputs found

    Singing for children and adults with cystic fibrosis

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the effects of singing as an adjunctive therapy for children and adults with CF on outcomes including the morbidity, respiratory muscles and pulmonary function

    Singing for children and adults with bronchiectasis

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To evaluate the effects of a singing program as an adjunctive therapy on the morbidity, respiratory muscles and pulmonary function of children and adults with bronchiectasis during (a) stable bronchiectasis and (b) an exacerbation of bronchiectasis

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Revisiting the influence of individual factors on heat exchange during exercise in dry heat using direct calorimetry

    No full text
    New Findings: What is the central question of this study? The aim was to identify the greatest contributor(s) to the variation in whole-body heat exchange, as assessed using direct calorimetry, among young men and women with heterogeneous characteristics during exercise at increasing metabolic heat production rates in dry heat. What is the main finding and its importance? The evaporative heat loss requirement, body morphology and aerobic fitness made the greatest contributions to the individual variation in evaporative and dry heat exchange, with the variance explained being exercise intensity dependent. These findings provide a foundation on which to build our ability to explain the individual variation in heat exchange during exercise-induced heat stress. Abstract: Numerous individual factors (e.g. fitness, sex, body morphology) are known to independently modulate heat exchange during exercise in the heat. However, in our view, the individual factor(s) making the greatest contribution to the variation in heat exchange among men and women remains poorly understood, despite several studies. We therefore sought to revisit this question by assessing whole-body dry and evaporative heat exchange using direct calorimetry in a heterogeneous sample of 100 young men (n = 57) and women (n = 43). Participants performed three 30 min bouts of cycling at very light (men/women; 300/250 W), light (400/325 W) and moderate (500/400 W) metabolic heat production rates, separated by a 15 min recovery, in dry heat (40°C, ∼12% relative humidity). Positive associations were observed between the evaporative heat loss requirement (metabolic heat production ± dry heat exchange) and evaporative heat loss (all P < 0.01), especially during moderate exercise (men, r = 0.62; women, r = 0.82), which explained 19–67% of individual variation. Peak aerobic power (in millilitres per kilogram per minute) was also positively related to evaporative heat loss in both sexes, albeit only during light and moderate exercise (r = 0.33–0.43; all P < 0.05), explaining a further 5–9% of individual variation. Dry heat exchange shared negative associations with body mass and surface area during all exercise bouts in both sexes (r = −0.29 to −0.55; all P < 0.05), explaining 9–30% of individual variation. We therefore demonstrate that the evaporative heat loss requirement, peak aerobic power and body morphology are the greatest contributors to the variation in whole-body heat exchange among young men and women exercising in dry heat, with the strength of those relationships being heat-load dependent. © 2019 The Authors. Experimental Physiology © 2019 The Physiological Societ

    The recommended threshold limit values for heat exposure fail to maintain body core temperature within safe limits in older working adults

    No full text
    Purpose: The American Conference of Governmental and Industrial Hygienists (ACGIH®) Threshold Limit Values (TLV® guidelines) for work in the heat consist of work-rest (WR) allocations designed to ensure a stable core temperature that does not exceed 38°C. However, the TLV® guidelines have not been validated in older workers. This is an important shortcoming given that adults as young as 40 years demonstrate impairments in their ability to dissipate heat. We therefore evaluated body temperature responses in older adults during work performed in accordance to the TLV® recommended guidelines. Methods: On three occasions, 9 healthy older (58 ± 5 years) males performed a 120-min work-simulated protocol in accordance with the TLV® guidelines for moderate-to-heavy intensity work (360 W fixed rate of heat production) in different wet-bulb globe temperatures (WBGT). The first was 120 min of continuous (CON) cycling at 28.0°C WBGT (CON[28°C]). The other two protocols were 15-min intermittent work bouts performed with different WR cycles and WBGT: (i) WR of 3:1 at 29.0°C (WR3:1[29°C]) and (ii) WR of 1:1 at 30.0°C (WR1:1[30°C]). Rectal temperature was measured continuously. The rate of change in mean body temperature was determined via thermometry (weighting coefficients: rectal, 0.9; mean skin temperature, 0.1) and direct calorimetry. Results: Rectal temperature exceeded 38°C in all participants in CON[28°C] and WR3:1[29°C] whereas a statistically similar proportion of workers exceeded 38°C in WR1:1[30°C] (χ2; P = 0.32). The average time for rectal temperature to reach 38°C was: CON[28°C], 53 ± 7; WR3:1[29°C], 79 ± 11; and WR1:1[30°C], 100 ± 29 min. Finally, while a stable mean body temperature was not achieved in any work condition as measured by thermometry (i.e., &gt;0°C·min−1; all P&lt;0.01), heat balance as determined by direct calorimetry was achieved in WR3:1[29°C] and WR1:1[30°C] (both P ≤ 0.08). Conclusion: Our findings indicate that the TLV® guidelines do not prevent body core temperature from exceeding 38°C in older workers. Furthermore, a stable core temperature was not achieved within safe limits (i.e., ≤38°C) indicating that the TLV® guidelines may not adequately protect all individuals during work in hot conditions. © 2017 JOEH, LLC
    corecore