230 research outputs found

    Inflationary Attractor from Tachyonic Matter

    Full text link
    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behaviour of the tachyonic inflation using the Hamilton-Jacobi formalism. We else obtain analytical approximations to the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial non-vanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.Comment: 4 pages, 2 figures, RevTe

    Search for DCC in 158A GeV Pb+Pb Collisions

    Full text link
    A detailed analysis of the phase space distributions of charged particles and photons have been carried out using two independent methods. The results indicate the presence of nonstatistical fluctuations in localized regions of phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199

    Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios

    Get PDF
    The effect of the final state Coulomb interaction on particles produced in Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment through the study of the pi-/pi+ and K-/K+ ratios measured as a function of transverse mass. While the ratio for kaons shows no significant transverse mass dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with an enhancement that increases with centrality. A silicon pad detector located near the target is used to estimate the contribution of hyperon decays to the pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in which the Coulomb interaction has been incorporated allows to place constraints on the time of the pion freeze-out.Comment: 9 pages, 12 figure

    Present Status and Future of DCC Analysis

    Get PDF
    Disoriented Chiral Condensates (DCC) have been predicted to form in high energy heavy ion collisions where the approximate chiral symmetry of QCD has been restored. This leads to large imbalances in the production of charged to neutral pions. Sophisticated analysis methods are being developed to disentangle DCC events out of the large background of events with conventionally produced particles. We present a short review of current analysis methods and future prospects.Comment: 12 pages, 5 figures. Invited talk presented at the 13th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 97), Tsukuba, Japan, 1-5 Dec 199

    Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry

    Full text link
    Two-particle correlations have been measured for identified negative pions from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of kT is presented, including a full correction for the resolution effects of the apparatus. The cross term Rout-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Qinv and Qspace have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence, fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.Comment: 13 pages including 10 figure

    Search for Disoriented Chiral Condensates in 158 AGeV Pb+Pb Collisions

    Get PDF
    The restoration of chiral symmetry and its subsequent breaking through a phase transition has been predicted to create regions of Disoriented Chiral Condensates (DCC). This phenomenon has been predicted to cause anomalous fluctuations in the relative production of charged and neutral pions in high-energy hadronic and nuclear collisions. The WA98 experiment has been used to measure charged and photon multiplicities in the central region of 158 AGeV Pb+Pb collisions at the CERN SPS. In a sample of 212646 events, no clear DCC signal can be distinguished. Using a simple DCC model, we have set a 90% C.L. upper limit on the maximum DCC production allowed by the data.Comment: 20 Pages, LaTeX, uses elsart.cls, 8 eps figures included, submitted to Physics Letters

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore