329 research outputs found
Information Presentation
The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers at Johnson Space Center and Ames Research Center
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Haematological and biochemical parameters in Churra-da-Terra-Quente ewes from the northeast of Portugal
Hematological and biochemical parameters, including plasma electrolytes and thyroid hormones, were determined in 73 clinically healthy Churra-da-Terra-Quente ewes, a typical breed from the northeast of Portugal. The hemogram values were: erythrocytes 9.8±1.51012/L; haemoglobin 118.1±19.1g/L; haematocrit 40.8±5.9%; leukocytes 5.7±1.8109/L; and platelets 544.3±177.2109/L. The thrombin time was 17.3±1.7 seconds. The values of biochemical parameters were: total protein 76.4±6.1g/L; glucose 2.87±0.60mmol/L; total cholesterol 1.65±0.33mmol/L; aspartate aminotransferase 155.9±49.2U/L; alanine aminotransferase 23.2±9.6U/L; γ-glutamyl transferase 48.0±18.7U/L; total alkaline phosphatase 121.6±76.1U/L; glutamate dehydrogenase 6.4±3.7U/L; urea 7.32±2.22mmol/L; creatinine 123.0±54.1μmol/L; total calcium 2.53±0.25mmol/L; phosphorus 2.10±0.46mmol/L; magnesium 1.01±0.09mmol/L; sodium 152.04±3.65mmol/L; potassium 4.7±0.4mmol/L; ionized calcium 1.32±0.07mmol/L; total thyroxine 111.75±42.29nmol/L; total triiodothyronine 1.01±0.28nmol/L; free T4 11.93±1.78pmol/L; free T3 4.22±1.33pmol/L; and thyroid-stimulating hormone 0.18±0.19μIU/mL. Although differences among the Churra-da-Terra-Quente breed and other breeds may occur, the hematological and biochemical parameters, plasma electrolytes, and thyroid hormones, for this indigenous breed, were generally situated within the reference intervals previously reported for sheep
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Spatial processing of visual information in the movement-detecting pathway of the fly
1. Spatial processing of visual signals in the fly's movement-detecting pathway was studied by recording the responses of directionally-selective movement-detecting (DSMD) neurons in the lobula plate. The summarized results pertain to a type of neuron which preferentially responds to horizontal movement directed toward the animal's midline. Three kinds of visual stimuli were used: moving gratings, reversing-contrast gratings and reversing-contrast bars.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47087/1/359_2004_Article_BF00613743.pd
- …