83 research outputs found

    Quantum Scattering in Two Black Hole Moduli Space

    Full text link
    We discuss the quantum scattering process in the moduli space consisting of two maximally charged dilaton black holes. The black hole moduli space geometry has different structures for arbitrary dimensions and various values of dilaton coupling. We study the quantum effects of the different moduli space geometries with scattering process. Then, it is found that there is a resonance state on certain moduli spaces.Comment: 15 pages, 19 figures, RevTeX 3.

    Fine tuning as an indication of physics beyond the MSSM

    Full text link
    We investigate the amount of fine tuning of the electroweak scale in the presence of new physics beyond the MSSM, parametrized by higher dimensional operators. We show that these significantly reduce the MSSM fine tuning to Delta<10 for a Higgs mass between the LEPII bound and 130 GeV, and a corresponding scale M_* of new physics as high as 30 to 65 times the Higgsino mass. If the fine-tuning criterion is indeed of physical relevance, the findings indicate the presence of new physics in the form of new states of mass of O(M_*) that generated the effective operators in the first instance. At small tanβ\tan\beta these states can be a gauge singlet or a SU(2) triplet. We derive analytical results for the EW scale fine-tuning for the MSSM with higher dimensional operators, including the quantum corrections which are also applicable to the pure MSSM case in the limit the coefficients of the higher dimension operators vanish. A general expression for the fine-tuning is also obtained for an arbitrary two-Higgs doublet potential.Comment: 27 pages, 6 Figures; Eqs.(15)-(18) and (A.2)-(A.5) simplified; figures 1-3 update

    1/N Effects in Non-Relativistic Gauge-Gravity Duality

    Full text link
    We argue that higher-curvature terms in the gravitational Lagrangian lead, via non-relativistic gauge-gravity duality, to finite renormalization of the dynamical exponent of the dual conformal field theory. Our argument includes a proof of the non-renormalization of the Schrodinger and Lifshitz metrics beyond rescalings of their parameters, directly generalizing the AdS case. We use this effect to construct string-theory duals of non-relativistic critical systems with non-integer dynamical exponents, then use these duals to predict the viscosity/entropy ratios of these systems. The predicted values weakly violate the KSS bound.Comment: 26 pages, late

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    The solar particle acceleration radiation and kinetics (SPARK) mission concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    Association of C-reactive protein with bacterial and respiratory syncytial virus-associated pneumonia among children aged <5 years in the PERCH study

    Get PDF
    Background. Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. Methods. We measured serum CRP levels in cases with World Health Organization-defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for "confirmed" bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to "RSV pneumonia" (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Results. Among 601 human immunodeficiency virus (HIV)-negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIVnegative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Conclusions. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
    corecore