220 research outputs found

    Keeping creative writing on track: Co-designing a framework to support behavior change

    Get PDF
    The application of persuasive technology in web-based and mobile phone-based systems is well established, particularly in the health domain. However, a greater understanding of the effectiveness of the techniques deployed is needed to facilitate the successful transfer of research findings into practical applications. The context explored here is that of creative writing and the potential use of persuasive technology to foster and support a productive writing routine. Employing a user-centered design approach, we conducted surveys and a co-creation workshop with writers. Goal setting and regular writing, combined with self-monitoring, were key indicators of an effective writing practice. Group and mentor support were also highlighted. Based on our findings, we developed the architecture for a mobile personal writing coach. We evaluated the architecture against existing frameworks, finding good congruence. This supports our long-term goal of creating a universal framework, applicable to a wider range of behavior change interventions, domains and users. The design considerations reported in this paper go some way towards that goal

    Cassini nightside observations of the oscillatory motion of Saturn's northern auroral oval

    Get PDF
    In recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet Imaging Spectrograph (UVIS) provide an excellent view of the planet's auroral emissions, which in turn give an account of the large-scale magnetosphere-ionosphere coupling and dynamics within the system. However, obtaining near-simultaneous views of the auroral regions with in situ measurements of magnetic field and plasma populations at high latitudes is more difficult to routinely achieve. Here we present an unusual case, during Revolution 99 in January 2009, where UVIS observes the entire northern UV auroral oval during a 2 h interval while Cassini traverses the magnetic flux tubes connecting to the auroral regions near 21 LT, sampling the related magnetic field, particle, and radio and plasma wave signatures. The motion of the auroral oval evident from the UVIS images requires a careful interpretation of the associated latitudinally “oscillating” magnetic field and auroral field-aligned current signatures, whereas previous interpretations have assumed a static current system. Concurrent observations of the auroral hiss (typically generated in regions of downward directed field-aligned current) support this revised interpretation of an oscillating current system. The nature of the motion of the auroral oval evident in the UVIS image sequence, and the simultaneous measured motion of the field-aligned currents (and related plasma boundary) in this interval, is shown to be related to the northern hemisphere magnetosphere oscillation phase. This is in agreement with previous observations of the auroral oval oscillatory motion

    5-ht inhibition of rat insulin 2 promoter cre recombinase transgene and proopiomelanocortin neuron excitability in the mouse arcuate nucleus

    Get PDF
    A number of anti-obesity agents have been developed that enhance hypothalamic 5-HT transmission. Various studies have demonstrated that arcuate neurons, which express proopiomelanocortin peptides (POMC neurons), and neuropeptide Y with agouti-related protein (NPY/AgRP) neurons, are components of the hypothalamic circuits responsible for energy homeostasis. An additional arcuate neuron population, rat insulin 2 promoter Cre recombinase transgene (RIPCre) neurons, has recently been implicated in hypothalamic melanocortin circuits involved in energy balance. It is currently unclear how 5-HT modifies neuron excitability in these local arcuate neuronal circuits. We show that 5-HT alters the excitability of the majority of mouse arcuate RIPCre neurons, by either hyperpolarization and inhibition or depolarization and excitation. RIPCre neurons sensitive to 5-HT, predominantly exhibit hyperpolarization and pharmacological studies indicate that inhibition of neuronal firing is likely to be through 5-HT1F receptors increasing current through a voltage-dependent potassium conductance. Indeed, 5-HT1F receptor immunoreactivity co-localizes with RIPCre green fluorescent protein expression. A minority population of POMC neurons also respond to 5-HT by hyperpolarization, and this appears to be mediated by the same receptor-channel mechanism. As neither POMC nor RIPCre neuronal populations display a common electrical response to 5-HT, this may indicate that sub-divisions of POMC and RIPCre neurons exist, perhaps serving different outputs

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Efficient description of shape perturbations

    Get PDF
    Airbus wish to have efficient ways of describing perturbations of a manu- factured aerofoil from its design shape. The typical kind of perturbations expected are waves, steps, and bumps, and automatic classification into the classes is desired. Various possible methods of analysis were pro- posed and studied in some detail, including projection onto suitable basis functions, wavelets, and radial basis functions. Other methods were studied in less detail, but with the aim of giving a digital signature of defects that could be used to classify them

    Electron energy loss and induced photon emission in photonic crystals

    Full text link
    The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained from the retarding force exerted on the electron by the induced electric field. The features of the energy loss spectra are shown to be related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice constants aa relative to the wavelength of the associated electron excitations λ\lambda, an effective medium theory can be used to describe the material; however, for aλa\sim\lambda the photonic band structure plays an important role. Special attention is paid to the frequency gap regions in the latter case.Comment: 12 pages, 7 figure

    Structural and dynamical properties of superfluid helium: a density functional approach

    Full text link
    We present a novel density functional for liquid 4He, properly accounting for the static response function and the phonon-roton dispersion in the uniform liquid. The functional is used to study both structural and dynamical properties of superfluid helium in various geometries. The equilibrium properties of the free surface, droplets and films at zero temperature are calculated. Our predictions agree closely to the results of ab initio Monte Carlo calculations, when available. The introduction of a phenomenological velocity dependent interaction, which accounts for backflow effects, is discussed. The spectrum of the elementary excitations of the free surface and films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore