299 research outputs found

    Targeted eccentric motor control to improve locomotion after incomplete spinal cord injury

    Get PDF
    OBJECTIVES/SPECIFIC AIMS: Incomplete spinal cord injury typically results in life-long disability, often in the form of profound loss of locomotion capability. Individuals who have experienced incomplete spinal cord injury exhibit persistent eccentric motor deficits, which are particularly prevalent in the weight acceptance phase of gait and emphasized in sagittal plane knee motion and frontal plane hip motion. METHODS/STUDY POPULATION: Motion analysis can capture the kinematic and joint-level deficits of these individuals, but it is impossible to directly calculate the contributions of individual muscles to weight acceptance due to the complexity of the musculoskeletal system. Instead, those muscle contributions must be simulated in order to approximate muscle power during locomotion. RESULTS/ANTICIPATED RESULTS: The traditional method for driving these simulations with electromyography readings is unavailable for individuals who have neuromuscular deficits (e.g., spasticity or paralysis), due to the need to generate reliable maximum voluntary isometric contractions for baseline purposes. Instead, this research develops a novel method for using resting electromyography data to drive musculoskeletal simulations using a muscle activation threshold paradigm. DISCUSSION/SIGNIFICANCE OF IMPACT: The simulation results of this method more closely resemble experimental results, but further simulation refinement is needed to fully capture the true muscle activity

    Entanglement swapping with photons generated on-demand by a quantum dot

    Full text link
    Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of non-classical light can be used for entanglement swapping, but quantum communication technologies with device-independent functionalities demand for push-button operation that, in principle, can be implemented using single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent requirements on the efficiency and purity of generation of entangled states. Here we tackle this challenge and show that pairs of polarization-entangled photons generated on-demand by a GaAs quantum dot can be used to successfully demonstrate all-photonic entanglement swapping. Moreover, we develop a theoretical model that provides quantitative insight on the critical figures of merit for the performance of the swapping procedure. This work shows that solid-state quantum emitters are mature for quantum networking and indicates a path for scaling up.Comment: The first four authors contributed equally to this work. 17 pages, 3 figure

    Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury

    Get PDF
    This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm. In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7d, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared axonal systems and adaptive plasticity in locomotor networks and highlights a critical window for activity-based rehabilitation.

    A multipair-free source of entangled photons in the solid state

    Full text link
    Unwanted multiphoton emission commonly reduces the degree of entanglement of photons generated by non-classical light sources and, in turn, hampers their exploitation in quantum information science and technology. Quantum emitters have the potential to overcome this hurdle but, so far, the effect of multiphoton emission on the quality of entanglement has never been addressed in detail. Here, we tackle this challenge using photon pairs from a resonantly-driven quantum dot and comparing quantum state tomography and second-order coherence measurements as a function of the excitation power. We observe that the relative (absolute) multiphoton emission probability is as low as pm=(5.6±0.6)104p_m= (5.6 \pm 0.6)10^{-4} (p2=(1.5±0.3)106p_2= (1.5 \pm 0.3)10^{-6}) at the maximum source brightness, values that lead to a negligible effect on the degree of entanglement. In stark contrast with probabilistic sources of entangled photons, we also demonstrate that the multiphoton emission probability and the degree of entanglement remain practically unchanged against the excitation power for multiple Rabi cycles, despite we clearly observe oscillations in the second-order coherence measurements. Our results, explained by a theoretical model that we develop to estimate the actual multiphoton contribution in the two-photon density matrix, highlight that quantum dots can be regarded as a multipair-free source of entangled photons in the solid state

    Lung adenocarcinoma presenting as a solitary gingival metastasis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gingival metastases are very rare and generally occur in disseminated tumors. We report a case of solitary gingival metastasis of lung cancer.</p> <p>Case presentation</p> <p>We report the case of a 74-year-old asymptomatic Caucasian woman affected by a rapidly growing, painless gingival swelling. Histopathologic examination of the excisional biopsy showed metastasis of poorly differentiated thyroid transcription factor 1-positive adenocarcinoma. A total-body computed tomographic scan revealed a tumor of the right lung lower lobe with ipsilateral, mediastinal lymph node swelling. Moreover, bone scintigraphy revealed no bone metastases. No other metastases were found, so we planned a multi-modal therapeutic approach with a curative intent. However, the tumor proved to be intrinsically resistant and highly aggressive.</p> <p>Conclusion</p> <p>The presentation of solitary gingival metastasis is exceptional. In view of its rapid clinical evolution, our case confirms that gingival metastasis is an important prognostic factor. This behavior raises the question whether the poor prognosis for patients with tumors with oral metastases depends on its diffuse spread or on its highly malignant nature.</p

    A Conditioning Lesion Provides Selective Protection in a Rat Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is neurodegenerative disease characterized by muscle weakness and atrophy due to progressive motoneuron loss. The death of motoneuron is preceded by the failure of neuromuscular junctions (NMJs) and axonal retraction. Thus, to develop an effective ALS therapy you must simultaneously preserve motoneuron somas, motor axons and NMJs. A conditioning lesion has the potential to accomplish this since it has been shown to enhance neuronal survival and recovery from trauma in a variety of contexts. rats that received a conditioning lesion was delayed and less severe. These improvements in motor function corresponded to greater motoneuron survival, reduced motor axonopathy, and enhanced NMJ maintenance at disease end-stage. Furthermore, the increased NMJ maintenance was selective for muscle compartments innervated by the most resilient (slow) motoneuron subtypes, but was absent in muscle compartments innervated by the most vulnerable (fast fatigable) motoneuron subtypes.These findings support the development of strategies aimed at mimicking the conditioning lesion effect to treat ALS as well as underlined the importance of considering the heterogeneity of motoneuron sub-types when evaluating prospective ALS therapeutics

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Role of Matrix Metalloproteinases and Therapeutic Benefits of Their Inhibition in Spinal Cord Injury

    Get PDF
    This review will focus on matrix metalloproteinases (MMPs) and their inhibitors in the context of spinal cord injury (SCI). MMPs have a specific cellular and temporal pattern of expression in the injured spinal cord. Here we consider their diverse functions in the acutely injured cord and during wound healing. Excessive activity of MMPs, and in particular gelatinase B (MMP-9), in the acutely injured cord contributes to disruption of the blood-spinal cord barrier, and the influx of leukocytes into the injured cord, as well as apoptosis. MMP-9 and MMP-2 regulate inflammation and neuropathic pain after peripheral nerve injury and may contribute to SCI-induced pain. Early pharmacologic inhibition of MMPs or the gelatinases (MMP-2 and MMP-9) results in an improvement in long-term neurological recovery and is associated with reduced glial scarring and neuropathic pain. During wound healing, gelatinase A (MMP-2) plays a critical role in limiting the formation of an inhibitory glial scar, and mice that are genetically deficient in this protease showed impaired recovery. Together, these findings illustrate complex, temporally distinct roles of MMPs in SCIs. As early gelatinase activity is detrimental, there is an emerging interest in developing gelatinase-targeted therapeutics that would be specifically tailored to the acute injured spinal cord. Thus, we focus this review on the development of selective gelatinase inhibitors

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF
    corecore