58 research outputs found

    Neuromotor Rehabilitation and Cognitive Outcomes in Patients with Traumatic Brain Injury through the Method BAPNE

    Get PDF
    After the acute phase of hospitalization, patients with severe brain injury, requiring interventions in health and social care in the long term: the work of rehabilitators is to facilitate the recovery of several disorders caused by trauma and involves all possible areas to return the patient to full functionality within the autonomy and satisfaction of basic needs, and psychological support they need.The recent use of body percussion through BAPNE method in neurorehabilitation offers the possibility of studying the development of motor skills, attention, coordination, memory and social interaction of patients with neurological diseases.The experimental protocol involves 52 patients with GCA selected on the basis of shared and structured requirements.The trial will provide the coaching protocol BAPNE (in two weekly sessions of 50 minutes to a maximum of 10 weeks in a group of patients), to the traditional rehabilitation activities. The control group will continue to perform exclusively the cognitive and neuromotor rehabilitation according to traditional protocols.All subjects will be: monitored the levels of cortisol in-time 0 - 75-180 days; recorded beats per minute through a heart rate monitor on your wrist; through the use of Lybra (equilibrium) and Kimeja (virtual reality) will be recorded data regarding the ability to adjust the balance of the patient in standing and sitting using the visual input and data relating to the patient's ability to coordinate fine motor skills in a virtual environment; through the administration of neuropsychological tests (HADS, NPI) will be detected improvements in mood and behavioral disturbances in the regression if available. At 6 months after administration of the protocol is expected to re-test to assess if present, the maintenance of the effects of rehabilitation obtained. The research is led by three neurologists from the center of neurorehabilitation Fondazione Roboris ASL RME in Rome

    Persistent Chlamydia Pneumoniae serology is related to decline in lung function in women but not in men. Effect of persistent Chlamydia pneumoniae infection on lung function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Chlamydia pneumoniae </it>(C pn) infection causes an acute inflammation in the respiratory system that may become persistent, but little is known about the long-term respiratory effects of C pn infections. Aim: To estimate the long term respiratory effects of C pn with change in forced expiratory volume in one second (FEV<sub>1</sub>) and forced vital capacity (FVC) as a main outcome variable.</p> <p>Methods</p> <p>The study comprised of 1109 subjects (500 men and 609 women, mean age 28 ± 6 years) that participated in the Reykjavik Heart Study of the Young. Spirometry and blood samples for measurements of IgG antibodies for C pn were done at inclusion and at the end of the follow-up period (mean follow-up time 27 ± 4 years).</p> <p>Results</p> <p>Having IgG against C pn at both examinations was significantly associated to a larger decrease in FEV<sub>1 </sub>(6 mL/year) and FVC (7 mL/year) in women but not in men. In women the association between C pn and larger FEV<sub>1 </sub>decline was only found in women that smoked at baseline where having C pn IgG was associated with 10 mL/year decline compared to smokers without C pn IgG. These results were still significant after adjustment for age, smoking and change in body weight.</p> <p>Conclusion</p> <p>Our results indicate that persistent C pn serology is related to increased decline in lung function in women but not in men. This effect was, however, primarily found in smoking women. This study is a further indication that the pathophysiological process leading to lung impairment may differ between men and women.</p

    Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae

    Get PDF
    Background Chlamydophila (Chlamydia) pneumoniae is an intracellular bacterium that has been identified within cells in areas of neuropathology found in Alzheimer disease (AD), including endothelia, glia, and neurons. Depending on the cell type of the host, infection by C. pneumoniae has been shown to influence apoptotic pathways in both pro- and anti-apoptotic fashions. We have hypothesized that persistent chlamydial infection of neurons may be an important mediator of the characteristic neuropathology observed in AD brains. Chronic and/or persistent infection of neuronal cells with C. pneumoniae in the AD brain may affect apoptosis in cells containing chlamydial inclusions. Results SK-N-MC neuroblastoma cells were infected with the respiratory strain of C. pneumoniae, AR39 at an MOI of 1. Following infection, the cells were either untreated or treated with staurosporine and then examined for apoptosis by labeling for nuclear fragmentation, caspase activity, and membrane inversion as indicated by annexin V staining. C. pneumoniae infection was maintained through 10 days post-infection. At 3 and 10 days post-infection, the infected cell cultures appeared to inhibit or were resistant to the apoptotic process when induced by staurosporine. This inhibition was demonstrated quantitatively by nuclear profile counts and caspase 3/7 activity measurements. Conclusion These data suggest that C. pneumoniae can sustain a chronic infection in neuronal cells by interfering with apoptosis, which may contribute to chronic inflammation in the AD brai

    cIAP-1 Controls Innate Immunity to C. pneumoniae Pulmonary Infection

    Get PDF
    The resistance of epithelial cells infected with Chlamydophila pneumoniae for apoptosis has been attributed to the induced expression and increased stability of anti-apoptotic proteins called inhibitor of apoptosis proteins (IAPs). The significance of cellular inhibitor of apoptosis protein-1 (cIAP-1) in C. pneumoniae pulmonary infection and innate immune response was investigated in cIAP-1 knockout (KO) mice using a novel non-invasive intra-tracheal infection method. In contrast to wildtype, cIAP-1 knockout mice failed to clear the infection from their lungs. Wildtype mice responded to infection with a strong inflammatory response in the lung. In contrast, the recruitment of macrophages was reduced in cIAP-1 KO mice compared to wildtype mice. The concentration of Interferon gamma (IFN-γ) was increased whereas that of Tumor Necrosis Factor (TNF-α) was reduced in the lungs of infected cIAP-1 KO mice compared to infected wildtype mice. Ex vivo experiments on mouse peritoneal macrophages and splenocytes revealed that cIAP-1 is required for innate immune responses of these cells. Our findings thus suggest a new immunoregulatory role of cIAP-1 in the course of bacterial infection

    Anti-Bacterial Effects of Poly-N-Acetyl-Glucosamine Nanofibers in Cutaneous Wound Healing: Requirement for Akt1

    Get PDF
    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (sNAG) results in increased kinetics of wound closure in diabetic animal models, which is due in part to increased expression of several cytokines, growth factors, and innate immune activation. Defensins are also important for wound healing and anti-microbial activities. Therefore, we tested whether sNAG nanofibers induce defensin expression resulting in bacterial clearance.The role of sNAG in defensin expression was examined using immunofluoresence microscopy, pharmacological inhibition, and shRNA knockdown in vitro. The ability of sNAG treatment to induce defensin expression and bacterial clearance in WT and AKT1-/- mice was carried out using immunofluoresent microscopy and tissue gram staining. Neutralization, using an antibody directed against β-defensin 3, was utilized to determine if the antimicrobial properties of sNAG are dependent on the induction of defensin expression.sNAG treatment causes increased expression of both α- and β-type defensins in endothelial cells and β-type defensins in keratinocytes. Pharmacological inhibition and shRNA knockdown implicates Akt1 in sNAG-dependent defensin expression in vitro, an activity also shown in an in vivo wound healing model. Importantly, sNAG treatment results in increased kinetics of wound closure in wild type animals. sNAG treatment decreases bacterial infection of cutaneous wounds infected with Staphylococcus aureus in wild type control animals but not in similarly treated Akt1 null animals. Furthermore, sNAG treatment of S. aureus infected wounds show an increased expression of β-defensin 3 which is required for sNAG-dependent bacterial clearance. Our findings suggest that Akt1 is involved in the regulation of defensin expression and the innate immune response important for bacterial clearance. Moreover, these findings support the use of sNAG nanofibers as a novel method for enhancing wound closure while simultaneously decreasing wound infection

    Nitric Oxide: Perspectives and Emerging Studies of a Well Known Cytotoxin

    Get PDF
    The free radical nitric oxide (NO•) is known to play a dual role in human physiology and pathophysiology. At low levels, NO• can protect cells; however, at higher levels, NO• is a known cytotoxin, having been implicated in tumor angiogenesis and progression. While the majority of research devoted to understanding the role of NO• in cancer has to date been tissue-specific, we herein review underlying commonalities of NO• which may well exist among tumors arising from a variety of different sites. We also discuss the role of NO• in human physiology and pathophysiology, including the very important relationship between NO• and the glutathione-transferases, a class of protective enzymes involved in cellular protection. The emerging role of NO• in three main areas of epigenetics—DNA methylation, microRNAs, and histone modifications—is then discussed. Finally, we describe the recent development of a model cell line system in which human tumor cell lines were adapted to high NO• (HNO) levels. We anticipate that these HNO cell lines will serve as a useful tool in the ongoing efforts to better understand the role of NO• in cancer
    • …
    corecore