150 research outputs found

    Sedimentological study of cold-water coral mounds on Pen Duick Escarpment (Gulf of Cadiz): preliminary results of the MD169 cruise

    Get PDF
    Cold-water corals are widely distributed along the Moroccan margin in the Northeast Atlantic Ocean. Within the Gulf of Cadiz mud volcanoes, submarine ridges and steep fault escarpments occur, which favour the settlement of scleractinians and build up coral mounds. One of these sites is the Pen Duick Escarpment, situated in the El Arraiche mud volcano field, 35 km offshore the city of Larache. Pen Duick Escarpment is a 6 km long, SSE-NNW oriented, 80 to 125 m high wall with a southwest-facing slope of 8 to 12°. Up to now, 15 coral mounds were recognized on top of the escarpment with an average estimated elevation of 15 m. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and seafloor, no actual living coral has been observed.This study is based upon three on-mound gravity cores (Alpha, Beta and Gamma mound) acquired by R/V Marion Dufresne in 2008 (MD169). Each mound was cored at least twice to recover both a core for biogeochemical and microbial studies, and another core for sedimentological purposes, in order to link both processes. The sedimentological cores were analysed using different techniques (medical CT scanning, XRF, U/Th dating, stable isotopes, grain-size analysis) in order to obtain a holistic view on the build-up of a mound. The coring, together with present-day seabed observations, revealed the architectural importance of open coral rubble plates in the role of mound building. These graveyards act not only as sediment trap but also as microhabitat for a wide range of benthic organisms

    Assessment of sea surface temperature changes in the Gulf of Cadiz during the last 30 ka: Implications for glacial changes in the regional hydrography

    Get PDF
    New dinocyst analyses were conducted on core MD99-2339 retrieved from the central Gulf of Cadiz. Dinocyst and foraminiferal assemblages from this core are combined with existing data off SW Portugal and NW Morocco to investigate past hydrological and primary productivity regimes in the subtropical NE Atlantic Ocean over the last 30 ka. Our results have revealed highest upwelling intensity during Heinrich Stadial 1 (HS 1) and the Younger Dryas and weaker upwelling cells during the Last Glacial Maximum (LGM) and HS 2, off the SW Iberian and NW Moroccan margins. Similar assemblages between the Gulf of Cadiz and the NW Moroccan margin, and distinct species off Portugal, were observed during the cold climatic extremes that punctuated the last 30 ka. This pattern has been linked to the occurrence of a hydrological structure between SW Iberia and Cadiz during the last glacial period, perhaps similar to the modern Azores Front. This front was probably responsible locally for heterotrophic dinocysts found in the Gulf of Cadiz during the last glacial period, even if this sector is not conductive to upwelling phenomena by Ekman transport. Regional reconstructions of paleo-sea-surface temperatures (SSTs) using dinocyst and foraminiferal transfer functions, as well as alkenones, are also discussed and depict coherent scenarios over the last 30 ka. Seasonal reconstructions Correspondence to: A. Penaud ([email protected].) of LGM SSTs obtained with this multi-proxy panel are discussed jointly with model outputs in order to contribute to ongoing efforts in model-data comparisonC2007-FCT/319/2006info:eu-repo/semantics/publishedVersio

    A comparative study of the recent history of Thérèse and Challenger mound, two cold-water coral carbonate mounds in the Belgica Mound province, Porcupine Seabight, SW of Ireland

    Get PDF
    During the Geomound-cruise with the R/V Marion Dufresne in 2001 gravity cores were recovered on the top of Thérèse mound (MD01-2463G) and Challenger mound (MD01-2451G). Both mounds are built up by cold-water corals (Lophelia pertusa sp. and Madrepora oculata sp.). This was confirmed by the IODP drilling (expedition 307) where Challenger mound was drilled to its base and cold-water corals were observed over the entire length of the mound.The gravity core (MD01-2463G), taken on top of Thérèse mound, was described and analyzed for its foraminiferal content and grainsize. A combination of these data with the results from previous studies (P-wave velocity, gamma density, magnetic susceptibility, X-ray imagery, U/Th-dating of corals and foraminifera (Frank et al., 2005, Foubert et al., 2006)), made it possible to distinguish different units, enabling a reconstruction of the evolution of the top of Thérèse mound.In a next step, the different zones in the core on top of Thérèse mound could be correlated with the sections identified in the gravity core recovered on top of Challenger mound (MD01-2451G) (Foubert et al., 2006). The mounds unveiled a comparable recent history, implying that their growth was controlled by the same parameters. Both cores revealed at least one discontinuity in the record, corresponding with a time hiatus of more than 200 ka. This discontinuity corresponds most likely to a change in hydrodynamic environment which prohibited further coral growth but erosional processes cannot be ruled out. The hiatus is in both cases covered with a layer of fine laminated sediments and dropstones. The origin of this detritic material is still unclear and will be further investigated using the Nd isotopic signature of the sediment as a tracer

    Biogeochemical evidence for anoxic oxidation of methane occurrences in the juvenile carbonate mounds from the Gulf of Cadiz

    Get PDF
    Carbonate mounds are conspicuous features of the European margins. Only fossil examples of these mounds were known when modern giant carbonate mounds were discovered in the S.-W. Irish margin. A decade of thorough studies in this area provided remarkable insight on mound processes and distribution. However, the question of the genesis and stabilization over geological times of these carbonate mounds remain wide open.Our work hypothesis is that moderate fluxes of low molecular hydrocarbons are oxidized and produces carbonates that may serve as cement for the mound stabilization. The recent discovery and mapping (R/V Belgica 2003, 2005) of the Pen Duick escarpment on the Moroccan margin (Gulf of Cadiz) by swath bathymetry shed light on new carbonate mounds associated with fluid migration markers such as pockmarks, carbonate crusts and mud volcanoes. Pore water biogeochemical profiles show that the sulphate to methane transition zone occurs at 3.5 meters below the sea floor within the mound, whereas the depth of no sulphate is much deeper in the surrounding sediments. At the same depth, carbonates are released with d13C values as low as -21 permil indicating a methane and possibly other light hydrocarbons origin. Hence anoxic oxidation of hydrocarbons, and subsequent carbonate production, may play a key role in the mound formation and/or stabilization. Interestingly, Lophelia coral rubbles were present all along the sediment column suggesting that this mound is a potential habitat for cold coral and associated communities

    Integrated research on the Pen Duick cold-water coral mounds: the MiCROSYSTEMS approach

    Get PDF
    The ESF EuroDIVERSITY MiCROSYSTEMS project aimed to turn the cold-water coral (CWC) mounds on the Pen Duick Escarpment (PDE) in the Gulf of Cadiz into a natural laboratory, exploring this highly complex biotope and to characterize its biodiversity. A common point of discussion with all other CWC mound provinces, surpassing its broad range of regional and morphological variability, concerns the driving forces regarding the initiation of these complex deep-water systems. Both oceanographic and geological processes have been proposed to play a significant role in the mound nucleation, growth and decline. During IODP Expedition 307, the importance of biogeochemical processes was already elucidated. Here, we present the preliminary results of the MD169 campaign as an integrated case study of three PDE CWC mounds: Alpha, Beta and Gamma mounds.Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and seafloor, no actual living reef has been observed during the many ROV surveys. This multidisciplinary study aims to present a comprehensive and holistic view on the local dynamic geological and oceanographic environment. Coring data suggests (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath PDE. Its dominant morphology has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for CWC mound nucleation near the top of PDE is offered through seepage-related carbonate crusts which might offer elevated colonization positions. Present-day seabed observations also suggested a possible important role of open coral rubble frameworks in the mound building process. These graveyards not only act as sediment trap but also as micro-habitat for a wide range of organisms. The presence of a fluctuating Sulphate-Methane Transition Zone is responsible for diagenesis, affecting both geochemical as physical characteristics, transforming the buried reef into a solid mound. Nevertheless, these seepage fluxes seem to be locally variable. As such, the origin and evolution of the PDE CWC mounds is, probably more than any other NE Atlantic cold-water coral mound province, located on the crossroads of environmental (hydrodynamic) and geological (seepage) pathways

    Application of medical X-ray computed tomography in the study of cold-water carbonate mounds

    Get PDF
    During the R/V Marion Dufresne 169 ‘MiCROSYSTEMS’ cruise (July 2008) to the El Arraiche mud volcano field in the Gulf of Cadiz cold-water coral mounds were targeted. Four on-mound gravity cores, with a total length of 17.5 m, were obtained for sedimentological and palaeoceanographic analyses in order to unveil the history of the uppermost meters of these cold-water coral build-ups. In parallel, four on-mound cores were taken on approximately the same location for microbiological and biogeochemical analyses. By comparing and correlating both results, more information can be revealed about the processes acting in the dead coral rubble fields which cover these mounds.Computed X-ray tomography (CT) was used for the identification and quantification of the corals inside the gravity cores. Furthermore, this technique is also useful for the investigation of sedimentological features, i.e. bioturbation, porosity, laminations... In this study, cores were scanned using a medical CT scanner on a relative high resolution which allows the three-dimensional visualization of the corals and sedimentological features. Slices were taken every 3 mm with an overlap of 1 mm.Based on these data it was possible to delineate different “CT” facies within the cores. On one hand there are intervals with a high amount of corals and on the other hand zones with a very low amount of corals or even no corals at all. In the first case two different facies can be distinguished: one facies with clearly recognizable, well preserved corals, and the second facies with crushed coral fragments. In both facies the corals are embedded in a homogenous matrix. Different facies could also be defined in the intervals containing little or no corals. For example, a homogenous facies with bioturbations and/or cracks. Also an important observation is the resence of pyrite which appears in all cores at a certain depth. Sometimes the pyrite could be observed in bioturbations or inside the corals.Besides that also the percentage of corals in these gravity cores were quantified using the “Morpho+” software, which was developed at the UGCT (Centre for X-ray Tomography, Ghent University, Belgium). Based on these results, a clear difference can be noticed between the four mounds. On Conger cliff, corals were only observed in the upper 34 cm while in the other locations corals can be found throughout the entire core with significant variations in the amount of corals.Finally, it was possible to identify different species of cold-water corals, namely Lophelia pertusa, Madrepora oculata, Desmophyllum cristagalli and Dendrophyllia. In conjunction with dating and palaeoenvironmental analyses of the corals and the sediment matrix, this can yield valuable information about the build-up of these cold-water coral mounds in the El Arraiche mud volcano field and the palaeoenvironmental characteristics at the time the corals were living

    The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints

    Get PDF
    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and delta C-13 and delta O-18 values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (similar to 70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisherie

    InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards

    Get PDF
    Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth-system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47 and Δ47 values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47 (I-CDES) values for Intercarb-Carbon Dioxide Equilibrium Scale
    corecore