184 research outputs found
Label-free biomarker sensing in undiluted serum with suspended microchannel resonators
Improved methods are needed for routine, inexpensive monitoring of biomarkers that could facilitate earlier detection and characterization of cancer. Suspended microchannel resonators (SMRs) are highly sensitive, batch-fabricated microcantilevers with embedded microchannels that can directly quantify adsorbed mass via changes in resonant frequency. As in other label-free detection methods, biomolecular measurements in complex media such as serum are challenging due to high background signals from nonspecific binding. In this report, we demonstrate that carboxybetaine-derived polymers developed to adsorb directly onto SMR SiO[subscript 2] surfaces act as ultralow fouling and functionalizable surface coatings. Coupled with a reference microcantilever, this approach enables detection of activated leukocyte cell adhesion molecule (ALCAM), a model cancer biomarker, in undiluted serum with a limit of detection of 10 ng/mL.National Cancer Institute (U.S.) (contract R01CA119402)SAIC-Frederick (contract 28XS119)National Institutes of Health (U.S.). Biotechnology Training Fellowshi
A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ(3)N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli
Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ(3)N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ(3)N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ(3)N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ(3)N)]Br
Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging
Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism
A multi-disciplinary perspective on emergent and future innovations in peer review [version 2; referees: 2 approved]
Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments
Incidences and Risk Factors of Organ Manifestations in the Early Course of Systemic Sclerosis: A Longitudinal EUSTAR Study
Objective Systemic sclerosis (SSc) is a rare and clinically heterogeneous autoimmune disorder characterised by fibrosis and microvascular obliteration of the skin and internal organs. Organ involvement mostly manifests after a variable period of the onset of Raynaud's phenomenon (RP). We aimed to map the incidence and predictors of pulmonary, cardiac, gastrointestinal (GI) and renal involvement in the early course of SSc. Methods In the EUSTAR cohort, patients with early SSc were identified as those who had a visit within the first year after RP onset. Incident SSc organ manifestations and their risk factors were assessed using Kaplan-Meier methods and Cox regression analysis. Results Of the 695 SSc patients who had a baseline visit within 1 year after RP onset, the incident non-RP manifestations (in order of frequency) were: skin sclerosis (75%) GI symptoms (71%), impaired diffusing capacity for monoxide40mmHg (14%), and renal crisis (3%). In the heart, incidence rates were highest for diastolic dysfunction, followed by conduction blocks and pericardial effusion. While the main baseline risk factor for a short timespan to develop FVC impairment was diffuse skin involvement, for PAPsys>40mmHg it was higher patient age. The main risk factors for incident cardiac manifestations were anti-topoisomerase autoantibody positivity and older age. Male sex, anti-RNA-polymerase-III positivity, and older age were risk factors associated with incident renal crisis. Conclusion In SSc patients presenting early after RP onset, approximately half of all incident organ manifestations occur within 2 years and have a simultaneous rather than a sequential onset. These findings have implications for the design of new diagnostic and therapeutic strategies aimed to ‘widen' the still very narrow ‘window of opportunity'. They may also enable physicians to counsel and manage patients presenting early in the course of SSc more accurately
Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody
BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111)Indium ((111)In) via bifunctional DTPA ( = (111)In-LIBS/(111)In-control). Autoradiography after incubation with (111)In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2), 4010 ± 630 DLU/mm(2) and 4520 ± 293 DLU/mm(2)) produced a significantly higher ligand uptake compared to (111)In-control (2101 ± 76 DLU/mm(2), 1181 ± 96 DLU/mm(2) and 1866 ± 246 DLU/mm(2)) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111)In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2) vs. 17390 ± 7470 DLU/mm(2); P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111)In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111)In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01). CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111)In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application
Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of paracoccidioidomycosis
This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid) magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis,
and it did not induce clinical, biochemical or histopathological alterations. The
nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications
Blood Pressure and Fasting Plasma Glucose Rather Than Metabolic Syndrome Predict Coronary Artery Calcium Progression: The Rancho Bernardo Study
OBJECTIVE—To examine the association of the metabolic syndrome, defined by World Health Organization (WHO) and Adult Treatment Panel III (ATP-III) criteria, and its components with coronary artery calcium (CAC) progression
Demonstration of the role of cell wall homeostasis in <em>Staphylococcus aureus</em> growth and the action of bactericidal antibiotics
In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice
BACKGROUND: Early and non-invasive detection of platelets on micro atherothrombosis provides a means to identify unstable plaque and thereby allowing prophylactic treatment towards prevention of stroke or myocardial infarction. Molecular magnetic resonance imaging (mMRI) of activated platelets as early markers of plaque rupture using targeted contrast agents is a promising strategy. In this study, we aim to specifically image activated platelets in murine atherothrombosis by in vivo mMRI, using a dedicated animal model of plaque rupture. METHODS: An antibody targeting ligand-induced binding sites (LIBS) on the glycoprotein IIb/IIIa-receptor of activated platelets was conjugated to microparticles of iron oxide (MPIO) to form the LIBS-MPIO contrast agent causing a signal-extinction in T2*-weighted MRI. ApoE(-/-) mice (60 weeks-old) were fed a high fat diet for 5 weeks. Using a small needle, the surface of their carotid plaques was scratched under blood flow to induce atherothrombosis. In vivo 9.4 Tesla MRI was performed before and repetitively after intravenous injection of either LIBS-MPIO versus non-targeted-MPIO. RESULTS: LIBS-MPIO injected animals showed a significant signal extinction (p/= 2% of the vascular lumen. Histology further confirmed significant binding of LIBS-MPIO compared to control-MPIO on the thrombus developing on the surface of ruptured plaques (p<0.01). CONCLUSION: in vivo mMRI detected activated platelets on mechanically ruptured atherosclerotic plaques in ApoE(-/-) mice with a high sensititvity. This imaging technology represents a unique opportunity for noninvasive detection of atherothrombosis and the identification of unstable atherosclerotic plaques with the ultimate promise to prevent strokes and myocardial infarctions
- …
