108 research outputs found

    Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission

    Get PDF
    peer-reviewedHere for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 mu A and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.PUBLISHEDpeer-reviewe

    Chronotropic incompetence and a higher frequency of myocardial ischemia in exercise echocardiography

    Get PDF
    Background Exercise echocardiography (EE) is an established method to diagnose coronary artery disease (CAD). Chronotropic incompetence (CI) during the EE may be a marker of myocardial ischemia. The purpose of this investigation was to evaluate the additive value of CI during EE in CAD diagnosis. Methods Between 2000 and 2006, 4042 patients (1900 men with a mean age of 56 ± 11 years) were evaluated by EE. Based on the heart rate (HR) reached during the exercise test, the subjects were divided into two groups: G1 group – 490 patients who failed to achieve 85% of the maximal age-predicted HR, and G2 group – 3552 patients who were able to achieve 85% of the maximal age-predicted HR. Clinical characteristics, left ventricular wall motion abnormalities – wall motion score index (WMSI) – and coronary angiography (CA) were the parameters compared between the two groups. Results The left ventricular wall motion abnormalities were more frequent in G1 group than in G2 group (54% versus 26%; P < 0.00001). WMSI was higher in G1 group than in G2 group, both at rest (1.06 ± 0.17 versus 1.02 ± 0.09; P < 0.0001) and after exercise (1.12 ± 0.23 versus 1.04 ± 0.21; P < 0.0001). In G1 group, 82% of the patients with positive EE for myocardial ischemia presented obstructive coronary, compared to 71% (P = 0.03) in G2 group. Conclusion CI is associated with a higher frequency of myocardial ischemia during EE, reinforcing the concept that CI is a marker of the severity of myocardial ischemia

    Usefulness and limitations of transthoracic echocardiography in heart transplantation recipients

    Get PDF
    Transthoracic echocardiography is a primary non-invasive modality for investigation of heart transplant recipients. It is a versatile tool which provides comprehensive information about cardiac structure and function. Echocardiographic examinations can be easily performed at the bedside and serially repeated without any patient's discomfort. This review highlights the usefulness of Doppler echocardiography in the assessment of left ventricular and right ventricular systolic and diastolic function, of left ventricular mass, valvular heart disease, pulmonary arterial hypertension and pericardial effusion in heart transplant recipients. The main experiences performed by either standard Doppler echocardiography and new high-tech ultrasound technologies are summarised, pointing out advantages and limitations of the described techniques in diagnosing acute allograft rejection and cardiac graft vasculopathy. Despite the sustained efforts of echocardiographic technique in predicting the biopsy state, endocardial myocardial biopsies are still regarded as the gold standard for detection of acute allograft rejection. Conversely, stress echocardiography is able to identify accurately cardiac graft vasculopathy and has a recognised prognostic in this clinical setting. A normal stress-echo justifies postponement of invasive studies. Another use of transthoracic echocardiography is the monitorisation and the visualisation of the catheter during the performance of endomyocardial biopsy. Bedside stress echocardiography is even useful to select appropriately heart donors with brain death. The ultrasound monitoring is simple and effective for monitoring a safe performance of biopsy procedures

    The enigma of in vivo oxidative stress assessment: isoprostanes as an emerging target

    Get PDF
    Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid

    Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity

    Get PDF
    Oxidative stress plays a key role in the pathogenesis of cancer and many metabolic diseases; therefore, an effective antioxidant therapy would be of great importance in these circumstances. Nevertheless, convincing randomized clinical trials revealed that antioxidant supplementations were not associated with significant reduction in incidence of cancer, chronic diseases and all-cause mortality. As oxidation of essential molecules continues, it turns to nitro-oxidative stress because of the involvement of nitric oxide in pathogenesis processes. Peroxynitrite damages via several distinctive mechanisms; first, it has direct toxic effects on all biomolecules and causes lipid peroxidation, protein oxidation and DNA damage. The second mechanism involves the induction of several transcription factors leading to cytokine-induced chronic inflammation. Finally, it causes epigenetic perturbations that exaggerate nuclear factor kappa-B mediated inflammatory gene expression. Lessons-learned from the treatment of several chronic disorders including pulmonary diseases suggest that, chronic inflammation and glucocorticoid resistance are regulated by prolonged peroxynitrite production

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere

    Guidelines for management of ischaemic stroke and transient ischaemic attack 2008

    Get PDF
    This article represents the update of the European Stroke Initiative Recommendations for Stroke Management. These guidelines cover both ischaemic stroke and transient ischaemic attacks, which are now considered to be a single entity. The article covers referral and emergency management, Stroke Unit service, diagnostics, primary and secondary prevention, general stroke treatment, specific treatment including acute management, management of complications, and rehabilitation
    corecore