1,092 research outputs found
Angular versus radial correlation effects on momentum distributions of light two-electron ions
We investigate different correlation mechanisms for two-electron systems and
compare their respective effects on various electron distributions. The
simplicity of the wave functions used allows for the derivation of closed-form
analytical expressions for all electron distributions. Among other features, it
is shown that angular and radial correlation mechanisms have opposite effects
on Compton profiles at small momenta.Comment: 22 pages, 5 figures, 3 tabl
Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall
The A+B --> C reaction-diffusion process is studied in a system where the
reagents are separated by a semipermeable wall. We use reaction-diffusion
equations to describe the process and to derive a scaling description for the
long-time behavior of the reaction front. Furthermore, we show that a critical
localization-delocalization transition takes place as a control parameter which
depends on the initial densities and on the diffusion constants is varied. The
transition is between a reaction front of finite width that is localized at the
wall and a front which is detached and moves away from the wall. At the
critical point, the reaction front remains at the wall but its width diverges
with time [as t^(1/6) in mean-field approximation].Comment: 7 pages, PS fil
The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2
We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency
Developing the New Hayabusa Curation Facility at Johnson Space Center
On 25 November 2005 the Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected a small amount of regolith dust from Muses Sea region of smooth terrain [1]. Even though optimal sample collection did not occur, the spacecraft returned to Earth with more than 10,000 grains ranging in the size from 30-180 microns [2]. These grains represent the only collection of pristine material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains will be transferred to NASA for parallel curation and allocation, the first 15 of which arrived in December 2011. In order to properly receive and process these samples, a new curation facility was developed at Johnson Space Center (JSC)
The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation
We present SCUBA-2 450micron and 850micron observations of the Serpens MWC
297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions.
Simulations suggest that radiative feedback influences the star-formation
process and we investigate observational evidence for this by constructing
temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two
component model of the JCMT beam for a fixed dust opacity spectral index of
beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre
fluxes are contaminated by free-free emission with a spectral index of
1.03+-0.02, consistent with an ultra-compact HII region and polar winds/jets.
Contamination accounts for 73+-5 per cent and 82+-4 per cent of peak flux at
450micron and 850micron respectively. The residual thermal disk of the star is
almost undetectable at these wavelengths. Young Stellar Objects are confirmed
where SCUBA-2 850micron clumps identified by the fellwalker algorithm coincide
with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol
to classify nine YSOs with masses 0.09 to 5.1 Msun. We find two Class 0, one
Class 0/I, three Class I and three Class II sources. The mean temperature is
15+-2K for the nine YSOs and 32+-4K for the 14 starless clumps. We observe a
starless clump with an abnormally high mean temperature of 46+-2K and conclude
that it is radiatively heated by the star MWC 297. Jeans stability provides
evidence that radiative heating by the star MWC 297 may be suppressing clump
collapse.Comment: 24 pages, 13 figures, 7 table
Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain
In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques
Massive migration from the steppe is a source for Indo-European languages in Europe
We generated genome-wide data from 69 Europeans who lived between 8,000-3,000
years ago by enriching ancient DNA libraries for a target set of almost four
hundred thousand polymorphisms. Enrichment of these positions decreases the
sequencing required for genome-wide ancient DNA analysis by a median of around
250-fold, allowing us to study an order of magnitude more individuals than
previous studies and to obtain new insights about the past. We show that the
populations of western and far eastern Europe followed opposite trajectories
between 8,000-5,000 years ago. At the beginning of the Neolithic period in
Europe, ~8,000-7,000 years ago, closely related groups of early farmers
appeared in Germany, Hungary, and Spain, different from indigenous
hunter-gatherers, whereas Russia was inhabited by a distinctive population of
hunter-gatherers with high affinity to a ~24,000 year old Siberian6 . By
~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred
throughout much of Europe, but in Russia, the Yamnaya steppe herders of this
time were descended not only from the preceding eastern European
hunter-gatherers, but from a population of Near Eastern ancestry. Western and
Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded
Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya,
documenting a massive migration into the heartland of Europe from its eastern
periphery. This steppe ancestry persisted in all sampled central Europeans
until at least ~3,000 years ago, and is ubiquitous in present-day Europeans.
These results provide support for the theory of a steppe origin of at least
some of the Indo-European languages of Europe
The need to promote behaviour change at the cultural level: one factor explaining the limited impact of the MEMA kwa Vijana adolescent sexual health intervention in rural Tanzania. A process evaluation
Background - Few of the many behavioral sexual health interventions in Africa have been rigorously evaluated. Where biological outcomes have been measured, improvements have rarely been found. One of the most rigorous trials was of the multi-component MEMA kwa Vijana adolescent sexual health programme, which showed improvements in knowledge and reported attitudes and behaviour, but none in biological outcomes. This paper attempts to explain these outcomes by reviewing the process evaluation findings, particularly in terms of contextual factors.
Methods - A large-scale, primarily qualitative process evaluation based mainly on participant observation identified the principal contextual barriers and facilitators of behavioural change.
Results - The contextual barriers involved four interrelated socio-structural factors: culture (i.e. shared practices and systems of belief), economic circumstances, social status, and gender. At an individual level they appeared to operate through the constructs of the theories underlying MEMA kwa Vijana - Social Cognitive Theory and the Theory of Reasoned Action – but the intervention was unable to substantially modify these individual-level constructs, apart from knowledge.
Conclusion - The process evaluation suggests that one important reason for this failure is that the intervention did not operate sufficiently at a structural level, particularly in regard to culture. Recently most structural interventions have focused on gender or/and economics. Complementing these with a cultural approach could address the belief systems that justify and perpetuate gender and economic inequalities, as well as other barriers to behaviour change
Observational Constraints on the Formation and Evolution of Binary Stars
We present a high spatial resolution UV to NIR survey of 44 young binary
stars in Taurus with separations of 10-1000 AU. The primary results include:
(1) The relative ages of binary star components are more similar than the
relative ages of randomly paired single stars, supporting coeval formation. (2)
Only one of the companion masses is substellar, and hence the apparent
overabundance of T Tauri star companions relative to main-sequence star
companions can not be explained by a wealth of substellar secondaries that
would have been missed in main-sequence surveys. (3) Roughly 10% of T Tauri
binary star components have very red NIR colors (K-L > 1.4) and unusually high
mass accretion rates. This phenomenon does not appear to be restricted to
binary systems, however, since a comparable fraction of single T Tauri stars
exhibit the same properties. (4) Although the disk lifetimes of single stars
are roughly equal to their stellar ages, the disk lifetimes of binary stars are
an order of magnitude less than their ages. (5) The accretion rates for both
single and binary T Tauri stars appear to be moderately mass dependent. (6)
Although most classical T Tauri star binaries retain both a circumprimary and a
circumsecondary disk, there are several systems with only a circumprimary disk.
Together with the relative accretion rates, this suggests that circumprimary
disks survive longer, on average, than circumsecondary disks. (7) The disk
lifetimes, mass ratios, and relative accretion signatures of the closest
binaries (10-100 AU) suggest that they are being replenished from a
circumbinary reservoir with low angular momentum. Overall, these results
support fragmentation as the dominant binary star formation mechanism.Comment: 67 pages including 11 figures, LaTeX2e, accepted for publication in
Ap
Control of star formation by supersonic turbulence
Understanding the formation of stars in galaxies is central to much of modern
astrophysics. For several decades it has been thought that stellar birth is
primarily controlled by the interplay between gravity and magnetostatic
support, modulated by ambipolar diffusion. Recently, however, both
observational and numerical work has begun to suggest that support by
supersonic turbulence rather than magnetic fields controls star formation. In
this review we outline a new theory of star formation relying on the control by
turbulence. We demonstrate that although supersonic turbulence can provide
global support, it nevertheless produces density enhancements that allow local
collapse. Inefficient, isolated star formation is a hallmark of turbulent
support, while efficient, clustered star formation occurs in its absence. The
consequences of this theory are then explored for both local star formation and
galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28
figures, in pres
- …
