36 research outputs found
Structure and evolutionary origin of the human granzyme H gene
Among the molecules proposed to be involved in cytotoxic T lymphocyte (CTL), natural killer (NK) and lymphokine activated killer (LAK) cell-mediated lysis are the granzymes, a family of serine proteases stored in the cytoplasmic granules of CTLs, NK and LAK cells. In addition to the granzymes A and B, a third member of this family has been cloned in man and designated granzyme H. We present the complete gene sequence including the 5' promoter region and demonstrate that the granzyme H sequence represents a functional gene expressed in activated T cells. Granzyme H shows the highest degree (greater than 54%) of amino acid sequence homology with granzyme B and cathepsin G and, like these genes, consists of five exons separated by introns at equivalent positions. The evolutionary history of granzyme H has been analyzed by reconstructing an evolutionary tree for granzyme sequences. We provide evidence that interlocus recombination between the ancestral genes of granzyme B and granzyme H occurred about 21 million years ago, leading to a replacement of exon 3, intron 3 and part of exon 4 in human granzyme H by human granzyme B sequences. Our results suggest that the ancestral gene of granzyme H is more closely related to cathepsin G and granzyme B than to the murine granzymes C to G. Thus, granzyme H does not represent a human counterpart of the known murine granzymes A to G. It diverged from cathepsin G before mammalian radiation and should, therefore, exist in other mammalian lineages as well
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
A single point mutation responsible for c-mos polymorphism in cancer patients.
A rare EcoRI restriction fragment length polymorphism (RFLP) in the 3' end of the human c-mos locus has been identified in DNA from patients with breast tumors, esophageal carcinomas and leukemias. Until now, this RFLP has not been found in normal populations, suggesting that its presence may reflect some cancer susceptibility. To characterize this RFLP, we have isolated both alleles of the c-mos locus from DNA of a breast cancer patient and determined the nucleotide sequence of the polymorphic region. Our results show that this RFLP is due to a single nucleotide substitution (T instead of C), resulting in the disappearance of EcoRI site
Expression of tal-1 and GATA-binding proteins during human hematopoiesis
Abstract
Tal-1 rearrangements are associated with nearly 30% of human T acute lymphoblastic leukemia. Tal-1 gene encodes a putative transcription factor with a basic helix-loop-helix domain and is known to be predominantly expressed in hematopoietic cells. We investigated the pattern of tal-1 expression in purified human hematopoietic cells by in situ hybridization and reverse transcriptase polymerase chain reaction analysis. Both methods demonstrated that the tal-1 gene is expressed in megakaryocytes and erythroblasts as well as in basophilic granulocytes. In addition, our results indicate that the tal-1 1A promoter, which contains two consensus GATA-binding sites, is active mainly in these lineages. Because the GATA-1 gene is known to transactivate several genes specific for the erythroid, megakaryocytic, and mastocytic/basophilic lineages, we studied GATA-1 expression in these purified hematopoietic cells. We found that GATA-1 and tal-1 genes are coexpressed in these three lineages. Remarkably, the expression of both genes is downmodulated during erythroid and megakaryocytic terminal maturation. In immature hematopoietic cells, tal-1 and GATA-1 genes are coexpressed in committed progenitors cells (CD34+/CD38(2+)), whereas they are not detectable in the most primitive cells (CD34(2+)/CD38-). In contrast, GATA-2 is strongly expressed in both most primitive and committed progenitors cells, whereas GATA-3 is mostly detected in most primitive ones. Altogether our results strongly suggest that GATA-1 modulates the transcription of tal-1 during the differentiation of the erythroid, megakaryocytic, and basosophilic lineages.</jats:p
Distinct DNase-I hypersensitive sites are associated with TAL-1 transcription in erythroid and T-cell lines
The tal-1 gene, frequently activated in human T-cell acute lymphoblastic leukemia (T-ALL), is expressed in the erythroid, megakaryocytic, and mast cell lineages during normal hematopoiesis. To gain further insight into the molecular mechanisms that control tal-1 expression, we investigated tal-1 chromatin structure in erythroid/megakaryocytic cell lines and in T-cell lines either with or without tal-1 rearrangements. Tal-1 transcription was shown to be monoallelic in Jurkat, a T-cell line that expresses tal-1 in the absence of apparent genomic alteration of the locus. Methylation studies indicated that the tal-152 GC-rich region behaves like a CpG island, hypomethylated in normal cells, and methylated de novo on transcriptionally inactive alleles in established cell lines. Five major DNase-I hypersensitive sites (HS) were mapped in the tal-1 locus. HS I, IV, and V were exclusively observed in the erythroid/megakaryocytic cell lines that express tal-1 from the promoters 1a and 1b. HS II was weak in hematopoietic cell lines, absent in Hela, and greatly enhanced in Jurkat, suggesting that this region might be implicated in the cis-activation of tal-1 promoter 1b in this cell line. HS III was weak in HEL and Jurkat, and greatly enhanced in DU528, a T-cell line that bears a t (1;14) and initiates tal-1 transcription within exon 4. These results suggest that distinct regulatory elements are associated with the use of the different tal-1 promoters.</jats:p
In vitro differentiation from a pluripotent human CD4+CD8+ thymic cloned cell into four phenotypically distinct subsets.
Abstract
Human thymic cell differentiation is almost totally unknown. In the present study we developed an in vitro system using human thymic cloned cells to analyze precursor-progeny relationship. We obtained several CD4+CD8+ double positive thymic clones that could give rise after several weeks in culture only to either CD4 or CD8 single positive clones. By contrast we isolated a unique pluripotent thymic double positive clone, termed B12, which differentiated into four phenotypically distinct T cell clones, namely double-positive CD4+CD8+, double-negative CD4-CD8- or either single-positive phenotype. We derived stable subclones representative of each phenotype and we showed by molecular analysis that they expressed the same TCR. Utilization of either CD3 or anticlonotypic mAb revealed that this TCR expressed by the four subclones was functional.</jats:p
Expression of tal-1 and GATA-binding proteins during human hematopoiesis
Tal-1 rearrangements are associated with nearly 30% of human T acute lymphoblastic leukemia. Tal-1 gene encodes a putative transcription factor with a basic helix-loop-helix domain and is known to be predominantly expressed in hematopoietic cells. We investigated the pattern of tal-1 expression in purified human hematopoietic cells by in situ hybridization and reverse transcriptase polymerase chain reaction analysis. Both methods demonstrated that the tal-1 gene is expressed in megakaryocytes and erythroblasts as well as in basophilic granulocytes. In addition, our results indicate that the tal-1 1A promoter, which contains two consensus GATA-binding sites, is active mainly in these lineages. Because the GATA-1 gene is known to transactivate several genes specific for the erythroid, megakaryocytic, and mastocytic/basophilic lineages, we studied GATA-1 expression in these purified hematopoietic cells. We found that GATA-1 and tal-1 genes are coexpressed in these three lineages. Remarkably, the expression of both genes is downmodulated during erythroid and megakaryocytic terminal maturation. In immature hematopoietic cells, tal-1 and GATA-1 genes are coexpressed in committed progenitors cells (CD34+/CD38(2+)), whereas they are not detectable in the most primitive cells (CD34(2+)/CD38-). In contrast, GATA-2 is strongly expressed in both most primitive and committed progenitors cells, whereas GATA-3 is mostly detected in most primitive ones. Altogether our results strongly suggest that GATA-1 modulates the transcription of tal-1 during the differentiation of the erythroid, megakaryocytic, and basosophilic lineages.</jats:p
