1,027 research outputs found

    Development and validation of the dentists' values scale

    Get PDF
    67 leaves ; 29 cm.Includes abstract and appendices.Includes bibliographical references (leaves 47-51).During the yearly dental school admissions process, decision makers focus on determining which applicants will become competent practitioners. As such, the admissions procedure may benefit from including a reliable, valid tool that can assist in predicting the degree to which applicants are likely to become successful students and practitioners. One factor that is related to success in the dental profession is values. (Values are encompassed by the concept of professionalism, which is deemed a crucial element of dental success; Chamberlain, Catano, & Cunningham, 2005). However, systematic research on the values of dentists is lacking. Therefore, we developed a measure of dentists' values and validated it using a sample of Canadian dentists. Exploratory factor analysis results indicated 5 factors: Altruism, Personal Satisfaction, Conscientiousness, Quality of Life, and Professional Status. Confirmatory factor analysis indicated the 5-factor model was a good fit. We also administered the measure to dental students to determine the relationship between dentist and student values. For the values of Altruism and Professional Status, t-tests suggested that there were no differences between the two groups

    The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts

    Get PDF
    © 2015 International Society for Microbial Ecology All rights reserved. Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse hostassociated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes

    Functional characteristics of calcitonin gene-related peptide receptors in human Ewing's sarcoma WE-68 cells

    Get PDF
    AbstractCalcitonin gene-related peptide (CGRP) receptor activity was studied in WE-68 human Ewing's sarcoma cells. 125I-human CGRP bound in a time-dependent, reversible and saturable manner. Scatchard plots were compatible with the presence of a homogenous population of CGRP receptors with high affinity (Kd = 15 pM, and Bmax = 1.9 fmolmg protein). The potency order of unlabeled peptides, in the presence of radioligand, was: human CGRP-II > human CGRP = chick CGRP > rat CGRP = rat [Tyro]CGRP > human [Tyro] CGRP > > salmon calcitonin (CT) > rat [Tyro]CGRP-(28-37). Each peptide except CT and [Tyio]CGRP-(28-37) stimulated cyclic AMP generation in a concentration-dependent manner, and the relative potencies paralleled their relative ability in inhibiting 125I-human CGRP binding. We conclude that WE-68 Ewing's sarcoma cells express genuine CGRP receptors which upon activation lead to stimulation of cyclic AMP formation.Calcitonin gene-related peptide; Calcitonin; cyclic AMP; (Human; Ewing's sarcoma cell

    In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    Get PDF
    Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. Conclusions:B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems

    Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes

    Get PDF
    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation

    Stratospheric-trace-gas-profile retrievals from balloon-borne limb imaging of mid-infrared emission spectra

    Get PDF
    The Limb Imaging Fourier Transform Spectrometer Experiment (LIFE) instrument is a balloon-borne prototype of a satellite instrument designed to take vertical images of atmospheric limb emission spectra in the 700–1400 cm−1 wavenumber range from the upper-troposphere–lower-stratosphere (UTLS) altitude region of the atmosphere. The prototype builds on the success of past and existing instruments while reducing the complexity of the imaging design. This paper details the results of a demonstration flight on a stabilized stratospheric balloon gondola from Timmins, Canada, in August 2019. Retrievals of vertical trace gas profiles for the important greenhouse gases H2O, O3, CH4, and N2O, as well as HNO3, are performed using an optimal estimation approach and the SASKTRAN radiative transfer model. The retrieved profiles are compared to approximately coincident observations made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) solar occultation and Microwave Limb Sounder (MLS) instruments. An evaluation of the LIFE measurements is performed, and areas of improvement are identified. This work increases the overall technical readiness of the approach for future balloon, aircraft, and space applications.</p

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology
    corecore