25 research outputs found

    Comparing Chemistry and Census-Based Estimates of Net Ecosystem Calcification on a Rim Reef in Bermuda

    Get PDF
    Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to changes in benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35 ± 1.01 kg CaCO3‱m−2‱y−1 and chemistry-based NEC 2.23 ± 1.02 kg CaCO3‱m−2‱y−1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled pHtotal every 3-h highlights the dynamic temporal variability in coral reef NEC. This ability for chemistry-based NEC techniques to capture higher frequency variability in coral reef NEC allows the mechanisms driving NEC variability to be explored and tested. Just four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa, Millepora alcicornis, and Orbicella franksi, were identified by the census-based NEC as contributing to 94 ± 19% of the total calcium carbonate production at Hog Reef suggesting these species should be highlighted for conservation to preserve current calcium carbonate production rates at Hog Reef. As coral cover continues to decline globally, the agreement between these NEC estimates suggest that either method, but ideally both methods, may serve as a useful tool for coral reef managers and conservation scientists to monitor the maintenance of coral reef structure and ecosystem services

    The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt

    Get PDF
    The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region, provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Water samples for phytoplankton enumeration were collected from the upper 30 m during two cruises, the first to the South Atlantic sector (Jan–Feb 2011; 60 °W–15 °E and 36–60 °S) and the second in the South Indian sector (Feb–Mar 2012; 40–120 °E and 36–60 °S). The species composition of coccolithophores and diatoms was examined using scanning electron microscopy at 27 stations across the Sub-Tropical, Polar, and Sub-Antarctic Fronts. The influence of environmental parameters, such as sea-surface temperature (SST), salinity, carbonate chemistry (i.e., pH, partial pressure of CO2 (pCO2), alkalinity, dissolved inorganic carbon), macro-nutrients (i.e., nitrate + nitrite, phosphate, silicic acid, ammonia), and mixed layer average irradiance, on species composition across the GCB, was assessed statistically. Nanophytoplankton (cells 2–20 Όm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, the coccolithophore Emiliania huxleyi and the diatoms Fragilariopsis nana, F. pseudonana and Pseudonitzschia sp. were the most dominant and widely distributed species. A combination of SST, macro-nutrient concentrations and pCO2 were the best statistical descriptors of biogeographic variability of biomineralizing species composition between stations. Emiliania huxleyi occurred in the silicic acid-depleted waters between the Sub-Antarctic Front and the Polar Front, indicating a favorable environment for this coccolithophore in the GCB after spring diatom blooms remove silicic acid to limiting levels. After full consideration of variability in carbonate chemistry and temperature on the distribution of nanoplankton in the GCB, we find that temperature remains the dominant driver of biogeography in a large proportion of the modern Southern Ocean

    Are health systems interventions gender blind? examining health system reconstruction in conflict affected states

    Get PDF
    Background Global health policy prioritizes improving the health of women and girls, as evident in the Sustainable Development Goals (SDGs), multiple women’s health initiatives, and the billions of dollars spent by international donors and national governments to improve health service delivery in low-income countries. Countries recovering from fragility and conflict often engage in wide-ranging institutional reforms, including within the health system, to address inequities. Research and policy do not sufficiently explore how health system interventions contribute to the broader goal of gender equity. Methods This paper utilizes a framework synthesis approach to examine if and how rebuilding health systems affected gender equity in the post-conflict contexts of Mozambique, Timor Leste, Sierra Leone, and Northern Uganda. To undertake this analysis, we utilized the WHO health systems building blocks to establish benchmarks of gender equity. We then identified and evaluated a broad range of available evidence on these building blocks within these four contexts. We reviewed the evidence to assess if and how health interventions during the post-conflict reconstruction period met these gender equity benchmarks. Findings Our analysis shows that the four countries did not meet gender equitable benchmarks in their health systems. Across all four contexts, health interventions did not adequately reflect on how gender norms are replicated by the health system, and conversely, how the health system can transform these gender norms and promote gender equity. Gender inequity undermined the ability of health systems to effectively improve health outcomes for women and girls. From our findings, we suggest the key attributes of gender equitable health systems to guide further research and policy. Conclusion The use of gender equitable benchmarks provides important insights into how health system interventions in the post-conflict period neglected the role of the health system in addressing or perpetuating gender inequities. Given the frequent contact made by individuals with health services, and the important role of the health system within societies, this gender blind nature of health system engagement missed an important opportunity to contribute to more equitable and peaceful societies

    Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction

    Get PDF
    The seven-valent pneumococcal conjugate vaccine (PCV7) was added to the UK national immunisation programme in September 2006. PCV13 replaced PCV7 in April 2010. As carriage precedes disease cases this study collected carried pneumococci from children each winter from 2006/7 to 2010/11 over PCV introduction. Conventional microbiology and whole genome sequencing were utilised to characterise pneumococcal strains.Overall prevalence of pneumococcal carriage remained stable. Vaccine serotypes (VT) decreased (p < 0.0001) with concomitant increases in non-vaccine serotypes (NVT). In winter 2010/11 only one isolate of PCV7 VT was observed (6B). PCV13 unique VTs decreased between winters immediately preceding and following PCV13 introduction (p = 0.04). Significant decreases for VTs 6B, 19F, 23F (PCV7) and 6A (PCV13) and increases for NVT 21, 23B, 33F and 35F were detected. The serotype replacement was accompanied by parallel changes in genotype prevalence for associated sequence types with clonal expansion contributing to replacement. By winter 2010/11, serotype coverage of PCV7 and PCV13 was 1% and 11% respectively.VT replacement was observed for PCV7 and PCV13 serotypes. Conjugate vaccine design and use requires continuous monitoring and revision

    Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay

    No full text
    calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO2 levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce “a transition in dominance from more to less heavily calcified coccolithophores” [Ridgwell A, et al., (2009) Biogeosciences 6:2611–2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80–83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO3 saturation are lowest in winter, the E. huxleyi population shifts from <10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO2 world
    corecore