52 research outputs found

    Photoinduced ordering and anchoring properties of azo-dye films

    Full text link
    We study both theoretically and experimentally anchoring properties of photoaligning azo-dye films in contact with a nematic liquid crystal depending on photoinduced ordering of azo-dye molecules. In the mean field approximation, we found that the bare surface anchoring energy linearly depends on the azo-dye order parameter and the azimuthal anchoring strength decays to zero in the limit of vanishing photoinduced ordering. From the absorption dichroism spectra measured in the azo-dye films that are prepared from the azo-dye derivative with polymerizable terminal groups (SDA-2) we obtain dependence of the dichroic ratio on the irradiation dose. We also measure the polar and azimuthal anchoring strengths in nematic liquid crystal (NLC) cells aligned by the azo-dye films and derive the anchoring strengths as functions of the dichroic ratio. Though linear fitting of the experimental data for both anchoring strengths gives reasonably well results, it, in contradiction with the theory, predicts vanishing of the azimuthal anchoring strength at certain nonzero value of the azo-dye order parameter. By using a simple phenomenological model we show that this discrepancy can be attributed to the difference between the surface and bulk order parameters in the films.Comment: revtex4, 25 pages, 9 figure

    RAF Kinase Activity Regulates Neuroepithelial Cell Proliferation and Neuronal Progenitor Cell Differentiation during Early Inner Ear Development

    Get PDF
    Background: Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I) plays a key role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by growth factors during development is complex and still not fully understood. Methodology/Principal Findings: By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG) and neuron maturation. Conclusions/Significance: We conclude that RAF kinase activity is essential to establish the balance between cell proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG

    Regulation of cellular proliferation, differentiation and cell death by activated Raf

    Get PDF
    The protein kinases Raf-1, A-Raf and B-Raf connect receptor stimulation with intracellular signaling pathways and function as a central intermediate in many signaling pathways. Gain-of-function experiments shed light on the pleiotropic biological activities of these enzymes. Expression experiments involving constitutively active Raf revealed the essential functions of Raf in controlling proliferation, differentiation and cell death in a cell-type specific manner

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies

    Mov Disord

    No full text
    Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disease with limited symptomatic treatment options. Aggregation of α-synuclein in oligodendrocytes is believed to be a central mechanism of the neurodegenerative process. PD01A and PD03A are 2 novel therapeutic vaccine candidates containing short peptides as antigenic moieties that are designed to induce a sustained antibody response, specifically targeting pathogenic assemblies of α-synuclein. The objectives of the current study were to evaluate primarily the safety and tolerability of PD01A and PD03A in patients with early MSA. Thirty patients (11 women) were randomized to receive 5 subcutaneous injections of either PD01A (n = 12), PD03A (n = 12), or placebo (n = 6) in this patient- and examiner-blinded, placebo-controlled, 52-week phase 1 clinical trial (ClinicalTrial.gov identifier: NCT02270489). Immunogenicity and clinical scores were assessed as secondary objectives. Twenty-nine patients reported a total of 595 treatment-emergent adverse events (mild or moderate, n = 555; severe, n = 40). Treatment-related adverse events included 190 injection-site reactions typically observed in vaccination trials with similar per-subject incidence in the treatment groups over time. Sustained IgG titers were observed in the PD01A-treated group, and 89% of treated patients developed a PD01-specific antibody response after receiving all injections. Induced antibodies displayed clear reactivity to the α-synuclein target epitope. Titers and antibody responder rate (58%) were lower in the PD03A-treated group. In conclusion, both PD01A and PD03A were safe and well tolerated. PD01A triggered a rapid and long-lasting antibody response that specifically targeted the α-synuclein epitope. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.Reach α-synuclein-dependent neurodegeneration: clinical development of therapeutic AFFITOPE vaccines for Parkinson’s disease and multisystem atroph
    corecore