425 research outputs found
Individual and collective behavior of dust particles in a protoplanetary nebula
We study the interaction between gas and dust particles in a protoplanetary
disk, comparing analytical and numerical results. We first calculate
analytically the trajectories of individual particles undergoing gas drag in
the disk, in the asymptotic cases of very small particles (Epstein regime) and
very large particles (Stokes regime). Using a Boltzmann averaging method, we
then infer their collective behavior. We compare the results of this analytical
formulation against numerical computations of a large number of particles.
Using successive moments of the Boltzmann equation, we derive the equivalent
fluid equations for the average motion of the particles; these are
intrinsically different in the Epstein and Stokes regimes. We are also able to
study analytically the temporal evolution of a collection of particles with a
given initial size-distribution provided collisions are ignored.Comment: 15 pages, 9 figures, submitted to Ap
Investigation of laser ablated ZnO thin films grown with Zn metal target: a structural study
High quality ZnO thin films were gown using the pulsed laser deposition
technique on (0001) AlO substrates in an oxidizing atmosphere, using a
Zn metallic target. We varied the growth conditions such as the deposition
temperature and the oxygen pressure. First, using a battery of techniques such
as x-rays diffraction, Rutherford Backscattering spectroscopy and atomic force
microscopy, we evaluated the structural quality, the stress and the degree of
epitaxy of the films. Second, the relations between the deposition conditions
and the structural properties, that are directly related to the nature of the
thin films, are discussed qualitatively. Finally, a number of issues on how to
get good-quality ZnO films are addressed.Comment: To be published in Jour. Appl. Phys. (15 August 2004
Recommended from our members
Thermal regime of the Southeast Indian Ridge between 88°E and 140°E: Remarks on the subsidence of the ridge flanks
International audienceThe flanks of the Southeast Indian Ridge are characterized by anomalously low subsidence rates for the 0–25 Ma period: less than 300 m Ma−1/2 between 101°E and 120°E and less than 260 m Ma−1/2 within the Australian-Antarctic Discordance (AAD), between 120°E and 128°E. The expected along-axis variation in mantle temperature (∼50°C) is too small to explain this observation, even when the temperature dependence of the mantle physical properties is accounted for. We successively analyze the effect on subsidence of different factors, such as variations in crustal thickness; the dynamic contribution of an old, detached slab supposedly present within the mantle below the AAD; and depletion in ϕ m, a parameter here defined as the “ubiquitously distributed melt fraction” within the asthenosphere. These effects may all contribute to the observed, anomalously low subsidence rate of the ridge flanks, with the most significant contribution being probably related to the depletion in ϕ m. However, these effects have a deep-seated origin that cannot explain the abruptness of the transition across the fracture zones that delineate the boundaries of the AAD, near 120°E and near 128°E, respectively
The Exomars Climate Sounder (EMCS) Investigation
The ExoMars Climate Sounder (EMCS) investigation is developed at the Jet Propulsion Laboratory (Principal Investigator J. T. Schofield) in collaboration with an international scientific team from France, the United Kingdom and the USA.
EMCS plans to map daily, global, pole-to-pole profiles of temperature, dust, water and CO2 ices, and water vapor from the proposed 2016 ExoMars Trace Gas Orbiter (EMTGO). These profiles are to be assimilated into Mars General Circulation Models (MGCMs) to generate global, interpolated fields of measured and derived parameters such as wind
Probing dust grain evolution in IM Lupi's circumstellar disc. Multi-wavelength observations and modelling of the dust disc
We present a panchromatic study, involving a multiple technique approach, of
the circumstellar disc surrounding the T Tauri star IM Lupi (Sz 82). We have
undertaken a comprehensive observational study of IM Lupi using photometry,
spectroscopy, millimetre interferometry and multi-wavelength imaging. For the
first time, the disc is resolved from optical and near-infrared wavelengths in
scattered light, to the millimetre regime in thermal emission. Our data-set, in
conjunction with existing photometric data, provides an extensive coverage of
the spectral energy distribution, including a detailed spectrum of the silicate
emission bands. We have performed a simultaneous modelling of the various
observations, using the radiative transfer code MCFOST, and analysed a grid of
models over a large fraction of the parameter space via Bayesian inference. We
have constructed a model that can reproduce all of the observations of the
disc. Our analysis illustrates the importance of combining a wide range of
observations in order to fully constrain the disc model, with each observation
providing a strong constraint only on some aspects of the disc structure and
dust content. Quantitative evidence of dust evolution in the disc is obtained:
grain growth up to millimetre-sized particles, vertical stratification of dust
grains with micrometric grains close to the disc surface and larger grains
which have settled towards the disc midplane, and possibly the formation of
fluffy aggregates and/or ice mantles around grains.Comment: 20 pages, 13 figures. Accepted for publication in A&
Scientific Rationale of Saturn's In Situ Exploration
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustratedby the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scienti-c goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussedthroughout this paper : rst, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopiccomposition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk OH ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to mostextrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Dierent mission architectures are envisaged, which would benet from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars of atmospheric pressure. We rally discuss the science payload required on a Saturn probe to match the measurement requirements
Planetary population synthesis
In stellar astrophysics, the technique of population synthesis has been
successfully used for several decades. For planets, it is in contrast still a
young method which only became important in recent years because of the rapid
increase of the number of known extrasolar planets, and the associated growth
of statistical observational constraints. With planetary population synthesis,
the theory of planet formation and evolution can be put to the test against
these constraints. In this review of planetary population synthesis, we first
briefly list key observational constraints. Then, the work flow in the method
and its two main components are presented, namely global end-to-end models that
predict planetary system properties directly from protoplanetary disk
properties and probability distributions for these initial conditions. An
overview of various population synthesis models in the literature is given. The
sub-models for the physical processes considered in global models are
described: the evolution of the protoplanetary disk, the planets' accretion of
solids and gas, orbital migration, and N-body interactions among concurrently
growing protoplanets. Next, typical population synthesis results are
illustrated in the form of new syntheses obtained with the latest generation of
the Bern model. Planetary formation tracks, the distribution of planets in the
mass-distance and radius-distance plane, the planetary mass function, and the
distributions of planetary radii, semimajor axes, and luminosities are shown,
linked to underlying physical processes, and compared with their observational
counterparts. We finish by highlighting the most important predictions made by
population synthesis models and discuss the lessons learned from these
predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the
'Handbook of Exoplanets', planet formation section, section editor: Ralph
Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
Engineering the magnetic and magnetocaloric properties of PrVO3 epitaxial oxide thin films by strain effects
Combining multiple degrees of freedom in strongly-correlated materials such
as transition-metal oxides would lead to fascinating magnetic and
magnetocaloric features. Herein, the strain effects are used to markedly tailor
the magnetic and magnetocaloric properties of PrVO3 thin films. The selection
of appropriate thickness and substrate enables us to dramatically decrease the
coercive magnetic field from 2.4 T previously observed in sintered PVO3 bulk to
0.05 T for compressive thin films making from the PrVO3 compound a nearly soft
magnet. This is associated with a marked enhancement of the magnetic moment and
the magnetocaloric effect that reach unusual maximum values of roughly 4.86 uB
and 56.8 J/kg K in the magnetic field change of 6 T applied in the sample plane
at the cryogenic temperature range (3 K), respectively. This work strongly
suggests that taking advantage of different degrees of freedom and the
exploitation of multiple instabilities in a nanoscale regime is a promising
strategy for unveiling unexpected phases accompanied by a large magnetocaloric
effect in oxides.Comment: This paper is accepted for publication in Applied Physics Letter
- …
