12,868 research outputs found

    Heathland creation on improved grassland using sulphur: is there a conflict between optimal application rates for plant and animal communities?

    Get PDF
    We examined the effectiveness of using elemental sulphur (a soil acidifier) as a method for creating heathland on improved pasture. We determined i) optimal rate of sulphur application to control mesotrophic grasses ii) if invertebrates avoid areas of sulphur application. Results indicated that optimal sulphur application attracted invertebrates

    Magnetic transitions in Pr2NiO4 single crystal

    Get PDF
    The magnetic properties of a stoichiometric Pr2NiO4 single crystal have been examined by means of the temperature dependence of the complex ac susceptibility and the isothermal magnetization in fields up to 200 kOe at T=4.2 K. Three separate phases have been identified and their anisotropic character has been analyzed. A collinear antiferromagnetic phase appears first between TN = 325 K and Tc1 = 115 K, where the Pr ions are polarized by an internal magnetic field. At Tc1 a first modification of the magnetic structure occurs in parallel with a structural phase transition (Bmab to P42/ncm). This magnetic transition has a first‐order character and involves both the out‐of‐plane and the in‐plane spin components (magnetic modes gx and gxcyfz, respectively). A second magnetic transition having also a first‐order character is also clearly identified at Tc2 = 90 K which corresponds to a spin reorientation process (gxcyfz to cxgyaz magnetic modes). It should be noted as well that the out‐of‐phase component of χac shows a peak around 30 K which reflects the coexistence of both magnetic configurations in a wide temperature interval. Finally, two field‐induced transitions have been observed at 4.2 K when the field is directed along the c axis. We propose that the high‐field anomaly arises from a metamagnetic transition of the weak ferromagnetic component, similarly to La2CuO4

    Crystal structure and phonon softening in Ca3Ir4Sn13

    Full text link
    We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single crystal diffraction data

    Structure-function mapping of a heptameric module in the nuclear pore complex.

    Get PDF
    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ~600-kD heptameric Nup84 complex, to a precision of ~1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain-mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC's interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution

    Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. V. Follow-up of 30 OGLE Transits. New Candidates

    Full text link
    We used VLT/VIMOS images in the V band to obtain light curves of extrasolar planetary transits OGLE-TR-111 and OGLE-TR-113, and candidate planetary transits: OGLE-TR-82, OGLE-TR-86, OGLE-TR-91, OGLE-TR-106, OGLE-TR-109, OGLE-TR-110, OGLE-TR-159, OGLE-TR-167, OGLE-TR-170, OGLE-TR-171. Using difference imaging photometry, we were able to achieve millimagnitude errors in the individual data points. We present the analysis of the data and the light curves, by measuring transit amplitudes and ephemerides, and by calculating geometrical parameters for some of the systems. We observed 9 OGLE objects at the predicted transit moments. Two other transits were shifted in time by a few hours. For another seven objects we expected to observe transits during the VIMOS run, but they were not detected. The stars OGLE-TR-111 and OGLE-TR-113 are probably the only OGLE objects in the observed sample to host planets, with the other objects being very likely eclipsing binaries or multiple systems. In this paper we also report on four new transiting candidates which we have found in the data.Comment: 11 pages, 17 figures, accepted for publication in A&

    Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates IV: The Puzzle of the Extremely Red OGLE-TR-82 Primary Solved

    Full text link
    We present precise new V, I, and K-band photometry for the planetary transit candidate star OGLE-TR-82. Good seeing V-band images acquired with VIMOS instrument at ESO VLT allowed us to measure V=20.6+-0.03 mag star in spite of the presence of a brighter neighbour about 1" away. This faint magnitude answers the question why it has not been possible to measure radial velocities for this object. One transit of this star has been observed with GMOS-S instrument of GEMINI-South telescope in i and g-bands. The measurement of the transit allows us to verify that this is not a false positive, to confirm the transit amplitude measured by OGLE, and to improve the ephemeris. The transit is well defined in i-band light curve, with a depth of A_i=0.034 mag. It is however, less well defined, but deeper (A_g=0.1 mag) in the g-band, in which the star is significantly fainter. The near-infrared photometry obtained with SofI array at the ESO-NTT yields K=12.2+-0.1 and V-K=8.4+-0.1, so red that it is unlike any other transit candidate studied before. Due to the extreme nature of this object, we have not yet been able to measure velocities for this star, but based on the new data we consider two different possible configurations:(1) a nearby M7V star, or (2) a blend with a very reddened distant red giant. The nearby M7V dwarf hypothesis would give a radius for the companion of R_p=0.3+-0.1 R_J, i.e. the size of Neptune. Quantitative analysis of near-IR spectroscopy finally shows that OGLE-TR-82 is a distant, reddened metal poor early K giant. This result is confirmed by direct comparison with stellar templates that gives the best match for a K3III star. Therefore, we discard the planetary nature of the companion. Based on all the new data, we conclude that this system is a main-sequence binary blended with a background red giant.Comment: 26 pages, 9 figures, ApJ accepte

    Coulomb breakup of neutron-rich 29,30^{29,30}Na isotopes near the island of inversion

    Get PDF
    First results are reported on the ground state configurations of the neutron-rich 29,30^{29,30}Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a 208Pb^{208}Pb target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 (7)(7) mb and 167 (13)(13) mb up to excitation energy of 10 MeV for one neutron removal from 29^{29}Na and 30^{30}Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29^{29}Na(3/2+){(3/2^+)} and 30^{30}Na(2+){(2^+)} is the dd orbital with small contribution in the ss-orbital which are coupled with ground state of the core. The ground state configurations of these nuclei are as 28^{28}Na_{gs (1^+)\otimes\nu_{s,d} and 29^{29}Nags(3/2+)νs,d_{gs}(3/2^+)\otimes\nu_{ s,d}, respectively. The ground state spin and parity of these nuclei, obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the ss and dd orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with the shell model calculation using MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in 30^{30}Na.Comment: Modified version of the manuscript is accepted for publication in Journal of Physics G, Jan., 201

    Scalar dark energy models mimicking Λ\LambdaCDM with arbitrary future evolution

    Full text link
    Dark energy models with various scenarios of evolution are considered from the viewpoint of the formalism for the equation of state. It is shown that these models are compatible with current astronomical data. Some of the models presented here evolve arbitrarily close to Λ\LambdaCDM up to the present, but diverge in the future into a number of different possible asymptotic states, including asymptotic de-Sitter (pseudo-rip) evolution, little rips with disintegration of bound structures, and various forms of finite-time future singularities. Therefore it is impossible from observational data to determine whether the universe will end in a future singularity or not. We demonstrate that the models under consideration are stable for a long period of time (billions of years) before entering a Little Rip/Pseudo-Rip induced dissolution of bound structures or before entering a soft finite-time future singularity. Finally, the physical consequences of Little Rip, Type II, III and Big Crush singularities are briefly compared.Comment: 15 pages, 1 figure, version to appear in Physics Letters
    corecore